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Kivonat

A számítógéppel segített geometriai modellezésben a digitálisan tárolt objektumok repre-
zentációja alapvető kérdés. Görbék, felületek és tömör testek intuitív módon definiálhatók
matematikai egyenletek segítségével, ezáltal nagymértékben egyszerűsödik a tervezés, a
gyártás, a végeselemes analízis és a grafikus megjelenítés.

A dolgozat fókuszában új felületreprezentációk vizsgálata áll, melyek az implicit felületek
közé tartoznak: egy F (x, y, z) = 0 alakú egyenlet adja meg őket a 3-dimenziós térben.
Az implicit felületeket jellemzően szabályos felületek (gömbök, hengerek, kúpok, tóruszok,
stb.) megadására használják; ezzel szemben jelen disszertáció véges, N-oldalú implicit fe-
lületdarabokkal foglalkozik, amelyek képesek szabadformájú geometria reprezentálására és
a felületek folytonos összeillesztésére; miközben megőrzik az implicit felületreprezentáció
lényeges számítási előnyeit.

A legfontosabb eredmények közé tartozik az I-patch reprezentáció új matematikai tulajdon-
ságainak felismerése és alternatív felületegyenletek kidolgozása, amely segítségével lehető-
ség nyílik N-oldalú határgörbe-hurkok interpolálására. Egy új „racionális” felírás alapján
a felületet előjeles távolságok kombinációjaként lehet előállítani. A bevezetett „hűen köze-
lítő” távolságtér jelentősen felülmúlja a korábbi távolságszámítási eljárásokat. Az új cor-
ner I-patch reprezentáció sarok-interpolánsokat kombinálva hoz létre felületeket, a korábbi
oldal-interpoláns alapúakkal szemben.

Az implicit felületek használatának előnyei két alkalmazási területen kerülnek bemutatásra:
szabadformájú modellezés kontrollpoliéderek alapján és háromszöghálók approximációja
egymáshoz simán kapcsolódó I-patch-ek segítségével.
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Abstract

In Computer Aided Geometric Design, the representation of objects in digital form is a
cardinal question. Curves, surfaces, and solid models can intuitively be defined by con-
tinuous mathematical equations that provide major benefits for 3D design, manufacture,
analysis, and rendering.

The focus of this dissertation is to explore new surface families that belong to the category
of implicit surfaces, defined by an equation F (x, y, z) = 0 in the 3-dimensional space. While
implicit surfaces are mostly used for modeling regular surfaces (spheres, cylinders, cones,
torii, etc.), this dissertation focuses on finite, multi-sided implicit patches that are capable
to represent freeform geometry, can ensure smooth connections and – at the same time –
retain the computational advantages of implicit representation.

The results presented here include newly recognized mathematical properties and alterna-
tive formulations for the I-patch representation that can interpolate multi-sided boundary
loops. A new rational formulation is suggested by means of which I-patches can be in-
terpreted as a constrained sum of 3D distances. I have proposed a new faithful distance
function that outperforms previous formulations with regard to distance estimation. The
novel corner I-patch representation combines corner interpolants in contrast to the previ-
ously applied side interpolants.

The benefits of implicit surfacing have been demonstrated in two application areas: freeform
design based on control polyhedra and approximation of meshes using smoothly connected
patchworks of I-patches.
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Introduction

Computer-Aided Design and Manufacturing (CAD/CAM) are cutting-edge technologies
that significantly contributed to the progress of human civilization in the last decades.
In a variety of areas such as architecture, mechanical engineering, vehicle engineering, or
medicine, we frequently encounter entities designed and manufactured using CAD/CAM
systems. The ease of creating complex 3D models on a computer has also been a primary
factor in the development of emerging fields such as virtual or augmented reality and
additive manufacturing (3D printing).

3D geometric modeling plays a key role in CAD/CAM systems. It deals with mathematical
representations, computational algorithms, and a great variety of applications. The funda-
mentals of Computer Aided Geometric Design (CAGD) were laid down in the 1970s, since
then a huge amount of research has been published presenting new geometric representa-
tions and design techniques.

The requirements of various applications are extremely diverse and often contradictory,
and the advantages and deficiencies of the methods must be balanced. There are a few
basic questions to be asked when a modeling scheme is selected.

Overview of modeling paradigms

Some of the most important factors to be considered are listed here.

Solid vs. surface model A fundamental question is whether we want to model a closed
volume of the 3D space or just want to represent a surface shell. In the former case, we
focus on operations to "add or remove material", and we need to maintain the geometric
and topological consistency of the models. For surfaces, we generally apply a different set
of operations to create, edit, and manipulate complex constrained geometries.

Regular vs. freeform geometry When creating surfaces or solids, we have the choice
to use only regular surfaces (cylinders, cones, spheres, tori, etc.) as building blocks from
which we build up our models with Boolean operations, or to use schemes that are capable
of producing a wide variety of shapes based on the modification of simple entities (control
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points, or other parameters). The latter is called freeform modeling and includes Bézier-
and B-spline surfaces or Coons-patches. Although there is no clear-cut classification, the
two paradigms have a dissimilar mathematical basis and support different operations and
interrogation techniques.

Discrete vs. continuous representation There is also a choice between storing prim-
itive data (points or scalars), and using linearized structures (e.g. triangle meshes, or
voxel-based trilinear interpolation) to reproduce the surface; or using continuous mathe-
matical representations of the 3D entities such as metaballs [Blinn, 1982] or NURBS. Exact
mathematical representations usually require less data for representing the same surface
with a similar level of detail and can guarantee exact smooth connections between com-
ponents, also, it is possible to perform exact computations of various geometric quantities
accurately, unlike the discrete models where only estimations can be computed.

Parametric vs. implicit equation Surface formulae can fall into two main categories:
implicit surfaces are defined as the zero set of an R3 → R function, while parametric sur-
faces are defined by a R2 → R3 mapping of a 2-dimensional region into the 3D space. This
choice correlates with the choice between regular and freeform surfaces: regular surfaces
are generally represented by implicit equations while freeform surfaces are dominantly in
parametric form. We remark, that the wide class of swept and lofted surfaces are often
represented as a combination of the two basic surface classes.

General topology surfacing

In freeform modeling, the most frequently used schemes all fit into the category of tensor
product surfaces, and thus always have two pairs of opposing sides. However, in practical
design, in particular for modeling aesthetic objects, the use of multi-sided (i.e. non four-
sided) patches is inevitable.

Handling non-four-sided patches has three main avenues. The first is trimming, when the
multi-sided patch and its boundary curves are embedded into the inside of a four-sided
parametric patch and its domain (see e.g. [Farin, 2002]). The second is splitting the patch
into only four-sided components via specifying internal boundary curves and normal fences
between them [Peters, 2019]. Both these approaches suffer from the fact that specifying
these curves is a non-trivial task.

This dissertation advocates for the third option, which is the use of genuine multi-sided
patch representations. Most such surfaces in the literature are in parametric form. They
include control point based surfaces [Loop and DeRose, 1989; Krasauskas, 2002; Várady
et al., 2016] which are calculated as a weighted average of an editable point structure; and
transfinite interpolation surfaces [Charrot and Gregory, 1984; Kato, 1991; Sabin, 1996;
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Várady et al., 2011] that are constructed as a blend of ribbon surfaces, defined along
individual boundaries.

Parametric surface representations offer great versatility in shape design and analysis;
however, for mapping a planar domain to 3D we need some intrinsic parameterization,
and this is a delicate issue in the case of multi-sided patches. It is also important to
consider that while it is easy to tessellate parametric surfaces, there are several geometric
interrogations that proved to be computationally demanding, e.g. intersections and joining
trimmed patches.

There are various modeling tasks, where the use of implicit multi-sided patches has many
advantages: (i) Creating accurate connections to surfaces given in implicit form, in partic-
ular to planes and natural quadrics, e.g. in hole filling, vertex blending, and lofting. (ii)
Defining a complex freeform object by a control polyhedron and obtaining a collection
of smoothly connected patches, where the implicit form is beneficial since regular shapes
can also be incorporated. (iii) Approximating complex surfaces defined by vector fields of
distances and gradients, e.g. cell-based representations and marching surface techniques.

Implicit surfaces are more rigid than parametrics, and editing the shape interior is a
real challenge, as there are no obvious control structures to do so. They are generally
C∞-continuous, representing half-spaces, so point membership classification is easy. No pa-
rameterization is needed for distance computations and approximating data points. Implicit
surfaces are favorable in photorealistic rendering, due to their computational efficiency in
ray tracing (see e.g. [Hart, 1996; Seyb et al., 2019]).

The primary purpose of this work is to revisit the classical area of implicit surface represen-
tations, and attempt to significantly enhance the I-patch concept of [Várady et al., 2001]. In
some sense, I-patches are similar to the transfinite schemes mentioned earlier, as boundary
curves and cross-derivatives – in this case given in implicit form – are blended together in
a smooth, somewhat controllable manner. I-patches interpolate a loop of boundary curves,
where each segment is defined as the intersection of a ribbon and a bounding surface, both
given in implicit form (similarly to functional splines [Li et al., 1990]).

Structure of this thesis

The thesis is divided into two main chapters. Chapter 1 explores the limitations and the
challenges of implicit surfacing, and accordingly extends former surface representations and
proposes new implicit schemes. In Section 1.3 new formulae and techniques for classical
representations are presented, in Section 1.4 we introduce the concept of faithful distance
function for multi-sided I-patches, while Section 1.5 describes a new implicit representation,
called corner I-patches.

The focus of Chapter 2 is to describe areas of application where I-patches can be uti-
lized. In Section 2.3 two schemes for modeling complex patchworks with polyhedral frames
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are presented, while in Section 2.4 a method for approximating triangular meshes with a
collection of smoothly connected I-patches is detailed.
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Notations

Pi,Q 2- or 3-dimensional points

v,n 2- or 3-dimensional direction vectors

Px,ny,Qz Given (x, y, or z) coordinate of a point or a vector

I,Ri, Bi Implicit functions (Rk → R)

I(x, y, z) orRi(P) Implicit functions evaluated in a certain point

Ĩ , R̃i, B̃i Implicit curves or surfaces (i.e. Ĩ = {P ∈ Rk : I(P) = 0})

a · n,u× v Dot and cross product of vectors

c, wi, ω, λ Real numbers

d, i, j, k, n Integers
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Chapter 1

New representations in multi-sided
implicit surfacing

1.1 Overview

An implicit surface is the zero isosurface of a given scalar-valued function. Formally, given

F : R3 → R, (1.1)

we call the set
{P ∈ R3 |F (P) = 0} (1.2)

an implicit surface.

Similarly, in two dimensions, we call the zero set of an implicit function

G : R2 → R, (1.3)

i.e.
{P ∈ R2 |G(P) = 0} (1.4)

an implicit curve.

As indicated in the Notations, implicit surfaces and curves will be marked with ~ – in the
above cases by F̃ and G̃.

1.1.1 Advantages of implicit surfaces

Point classification Interrogation of points – whether they are on an implicit surface –
is a simple operation. For an implicit surface F̃ and a point P, it simply means checking
if F (P) = 0.
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We can also easily classify points based on which half-space of the surface they are in, as
in one of the half-spaces F (P) < 0, in the other F (P) > 0.

Consequently, it is also simple for a closed implicit surface to filter points that are within
the enclosed volume. In this thesis, the following convention will be used: inside the volume
F (P) < 0 while outside F (P) > 0.

Boolean operations Implicit surfaces are also well-suited for executing Boolean opera-
tions on their enclosed volumes. For example

Ω(F ) ∪ Ω(G) ≡ Ω(min(F,G)) (1.5)

Ω(F ) ∩ Ω(G) ≡ Ω(max(F,G)) (1.6)

Ω(F ) \ Ω(G) ≡ Ω(max(F,−G)), (1.7)

where Ω(F ) denotes the volume enclosed by F , i.e. {P ∈ Rk : F (P) ≤ 0}

Approximation An implicit equation naturally defines a distance metric from the zero
isosurface, which is nonzero in other places and continuous. It is thus directly usable in
least squares fitting:

argmin
F

∑
P∈PS

(F (P))2, (1.8)

where PS denotes the set of points to be approximated.

We should be careful, however, because

• F ≡ 0 is a trivial optimal solution, so normalization methods have to be applied to
avoid it,

• the distance metric of an implicit surface can be highly distorted, which can ruin the
approximation.

Ray casting Implicit surfaces can also be trivially intersected by rays when doing ray
casting or ray tracing. The equation of a ray is P + t · d, so calculating intersections is
equivalent to solving a univariate (generally) nonlinear equation

F (P+ t · d) = 0. (1.9)

In some cases, this can be solved directly. In the general case, it may be solved by using ray
marching, increasing t in small steps, and searching for the first change of the sign. Then,
the root can be further approximated using regula falsi, or similar numerical methods.
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1.1.2 Disadvantages of implicit surfaces

Tessellation Tessellating – i.e. generating surface points and creating a mesh from them
– is a much more difficult task for implicit surfaces, then for parametric surfaces. On
one hand, we can generate points of parametric surfaces by substituting (2D) parametric
coordinates of the domain into the equation, and create a mesh by tessellating the domain,
and mapping the triangulation onto the surface. On the other hand, in the implicit case,
we have to resort to more complex and less stable algorithms.

Marching cubes [Lorensen and Cline, 1987], dual contouring [Ju et al., 2002] and their
variants are popular for meshing implicit surfaces. They subdivide the bounding box into
small cells, then approximate local parts of the surface by polygons in each cell (MC) or
dual to the cell structure (DC). However, their quality is usually worse than tessellations
coming from parametric surfaces.

Texture mapping Parametric surfaces with a low distortion parameterization have a
natural way to map a texture to the surface, by using the parameterization as texture
coordinates.

On implicit surfaces, however, there is no such direct method, and it is difficult to create
a local 2D coordinate system on the surface.

Design Control point-based surfaces are very popular in design, due to their intuitiveness
to define complex surfaces. This has been made possible by bases that have the affine
invariance, the convex hull, and the partition of unity properties; with the control points
acting as coefficients on them. These include the Bernstein and B-spline bases.

For implicit surfaces, although some control data based methods have been published, like
the A-patch [Bajaj et al., 1995], they have never become widely used, due to the lack of
intuitive control for design.
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1.2 Previous work

Implicit surfaces have extensive literature, related to a wide range of topics, including
scattered data interpolation, approximation, blending, ray tracing, etc. For a general in-
troduction, see the classic book on the subject [Bloomenthal et al., 1997].

1.2.1 Global methods

In this context, a global method is a scheme that generates one single surface equation
to be evaluated on the whole 3D space. This can be achieved through various techniques,
some of which are listed here.

Constructive solid geometry (CSG) is based on the fact that an implicit surface
equation can also be a representation of the enclosed volume if interpreted as

{P ∈ R3|F (P) ≤ 0}. (1.10)

CSG [Roth, 1982] utilizes simple Boolean operations on these volumes and uses primitives
(cuboids, cylinders, prisms, spheres, etc.) as building blocks. CSG builds up a tree, with
operations in the nodes and primitives in the leaves. Blends can also be added to certain
operations so that the surface looks smooth where multiple primitives connect.

High-degree algebraic polynomials can also be used to represent complex shapes with
a single equation. The surface can be fit to interpolate a set of constraints. The feasi-
bility and minimal degree of this construction were explored in [Bajaj and Ihm, 1992a],
which gives explicit equations, based on Bézout’s theorem, for the interpolation of Hermite
boundary conditions with implicit surfaces, resulting in a linear system. However, the eli-
gible solutions often include highly curved and self-intersecting surfaces, which are difficult
to filter out and complicate ray tracing, distance estimation, and similar operations. This
will later be investigated in 1.3.1.2.

Neural networks are also suitable to represent implicit surfaces. Given basically any kind
of input, the neural network – as a universal approximator – can learn to approximate it.
They can also be augmented with additional data for training them, a recent development
is Neural Radiance Fields (NeRF) [Mildenhall et al., 2021] which is capable of estimating
the emitted radiance for photorealistic rendering. Their drawback is that a huge compu-
tational capacity is required, but the latest publications show rapid improvements in that
regard [Müller et al., 2022].
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1.2.2 Local methods

Local methods subdivide the 3D space into (regular or irregular) regions and define im-
plicit surfaces in each of them. If geometric continuity on the region boundaries is to be
preserved, they have to adhere to certain constraints. (For the definition of geometric con-
tinuity in an implicit context, see [Garrity and Warren, 1991].)

Voxel reconstruction is a computationally effective way to reconstruct an implicit sur-
face. Storing values in each vertex of a regular grid has a high storage demand, but eval-
uating the surface equation is efficient. Trilinear interpolation even has hardware support
on modern GPUs, although it produces only C0-continuous surfaces.

Smooth surfaces can be acquired by tricubic interpolation [Lekien and Marsden, 2005].
There is also a list of enhanced approaches like using a modified (BCC or FCC) grid
structure [Vad et al., 2014] or storing gradient values and approximating the isosurface by
Taylor polynomials [Bán and Valasek, 2020].

Blend (or fillet) surfaces between two or more surfaces are the result of a basic operation
in CAD systems. Implicit blending surfaces were introduced in the seminal paper of Hoff-
mann and Hopcroft [Hoffmann and Hopcroft, 1985], and many important problems – like
unwanted bulges and discontinuities – were identified and resolved by the displacement
blend [Rockwood, 1989]. The superelliptic blend used in this method still had gradient
discontinuities, which can be avoided by replacing the standard set-theoretic CSG oper-
ators of Ricci [Ricci, 1973] with F-rep [Pasko et al., 1995], based on R-functions, or soft
blending [Dekkers et al., 2004], which satisfies a Lipschitz condition. Recent developments
include gradient-based operators [Gourmel et al., 2013] and better topology control [Zanni
et al., 2015].

Functional splines [Li et al., 1990; Hartmann, 1990, 2001; Zhu et al., 2008], on the other
hand, take a more pragmatic approach, by defining the patch as a blend between a base and
a transversal surface, generalizing Liming’s conic formula [Liming, 1947]. In our setting,
these correspond to the products of the primary and bounding surfaces, respectively. The
exact patch equation will be described in 1.3.1.3. The bounded blend of [Pasko et al., 2005]
also defines boundaries as the intersections of primaries and a single bounding surface, while
ensuring that the latter contains the entire blend. I-patches [Várady et al., 2001] are de-
fined as the weighted sum of mixed products between ribbon and bounding surfaces. This
scheme will be explained in detail in 1.3.2.

Cell-based methods divide the 3D space into not necessarily regular regions based on ge-
ometric rules. [Warren, 1992] proposes local fitting of implicit surfaces in a subdivision of
3D space (e.g. a simplicial mesh), this way avoiding the problems of higher-order interpola-
tion. The implicit surface is defined as an interpolant of values at given vertices. Continuity
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constraints at the vertices are computed from a user-defined collection of planes embedded
in the mesh – in other words, a control polyhedron. Depending on the interpolant used,
the surface can exactly interpolate the values at the vertices or approximate them with
additional smoothness.

Algebraic splines [Sederberg, 1985] and A-patches [Bajaj et al., 1995] are very similar, as
they are also defined over simplexes. In 3D, the generated patches are always 3- or 4-sided.
It can be proven that 3-sided implicit surfaces defined in tetrahedra have at most one
intersection with a line going through the apex, so there will be no self-intersections; a
comparable assertion is known for 4-sided surfaces, as well. The construction is such that
C1 or C2 continuity between the patches can be ensured, and the remaining degrees of
freedom can be used for (local and/or global) shape adjustment.

We remark that the use of multi-sided parametric patches to represent isosurfaces extracted
on a grid was investigated in [Chávez and Rockwood, 2015]. First, a boundary curve net-
work with Hermite interpolation is created, and then the surface is represented using the
multi-sided parametric patches defined in [Várady et al., 2011].
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1.3 Constructing smoothly connected implicit patchworks

The focus of this section will be the investigation of implicit surface representations to be
used for creating piecewise implicit patchworks. In this context, we will consider a collection
of implicit patches defined over space partitions and separated by bounding surfaces, where
the patches of the neighboring cells connect along the respective bounding surface with a
given geometric continuity.

In 1.3.1, a deeper analysis is given into some of the methods mentioned previously, with
examples. In 1.3.2, we will show new results extending the capabilities of the I-patch
representation. The contents of 1.3.1 and 1.3.2.1 are merely revising previous work (except
the definition of Liming-surfaces in 1.3.1.1), while the other parts contain the details of
the novel results summarized in the theses.

1.3.1 Revisiting classical methods

In this section, we investigate the direct algebraic interpolation technique by [Bajaj and
Ihm, 1992a], and the functional splines, including Liming’s method, in detail.

1.3.1.1 Liming’s method

Liming’s method for conic (quadratic) curves as outlined in [Liming, 1947] is defined as
follows (see also Figure 1.1):

1. Let L1, L2 : R2 → R be two lines in implicit form, that represent two (distinct)
tangents to a desired curve

2. Let C : R2 → R be a secant line to the curve, going through the two points of
tangency

3. Then, ∀λ ∈ (0; 1) : the curve

Q = (1− λ) · L1 · L2 − λ · C2 (1.11)

is a nonsingular quadratic curve, fulfilling the tangential conditions.

There is an important property of Liming’s method we will need to utilize later. Although
intuitive, no proof was found in the literature, so we include one.

Lemma 1. Let Q̃ be a quadratic implicit curve, L̃1, L̃2 two distinct tangent lines of it, C̃
the secant through the points of tangency. Then, ∃λ ∈ (0; 1), ω ∈ R s.t.

(1− λ) · L1 · L2 − λ · C2 ≡ ω ·Q. (1.12)
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Figure 1.1: An example of Liming’s method.

Figure 1.2: Liming’s method with surfaces.

The proof is included in Appendix A. The meaning of this is that for any quadratic curve
and any two tangent lines to it, there exists a λ value for which the original curve is
reproduced.

In this dissertation, we extend Liming’s method for surfaces. Consider the planes P̃1 and
P̃2 and the cutting plane C̃, then the surface

Q = (1− λ) · P1 · P2 − λ · C2 (1.13)

is a quadratic surface with G1 continuity to P̃1 and P̃2. See examples with various λ values
in Figure 1.2.

1.3.1.2 Hermite interpolation

The method described by Bajaj and Ihm in [Bajaj and Ihm, 1992a] deals with constructing
a minimal degree algebraic surface, satisfying given constraints. These include points with
an associated normal vector, or curves with a normal function along them.

An algebraic surface defined by the function F : R3 → R is said to interpolate the con-
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straints with C1 continuity, if

F (P) = 0, (1.14)

∇F (P) = λ · n, (1.15)

for all P specified points or all points of specified curves, where n is the specified normal
vector at P and λ is a nonzero real number.

For creating the equation system to obtain the surface coefficients, Bézout’s theorem is used
as described in [Bajaj and Ihm, 1992a]: a curve of degree d intersects a surface of degree n

at most in n · d points, if the number of intersections is finite; otherwise, a component of
the curve lies entirely in the surface. From this, it follows that if we choose n · d+1 points
along the curve, then a surface fulfilling the constraints will interpolate the branches of the
curve containing those points.

(a) Boundary curves. (b) The quartic surface. (c) A quintic surface.

(d) Another quintic surface. (e) A degree-6 surface. (f) Another degree-6 surface.

Figure 1.3: Algebraic surfaces of various degrees interpolating boundary
curves.

Now having reduced everything to point constraints, for all (P,n) pair we have the following
equations:

F (P) = 0, (1.16)

nx · ∂yF (P)− ny · ∂xF (P) = 0, (1.17)

nx · ∂zF (P)− nz · ∂xF (P) = 0. (1.18)

Here we suppose that nx ̸= 0. Otherwise the equation nz · ∂yf(P)−ny · ∂zf(P) = 0 needs
to be used instead of one of the above-mentioned, so that the coordinate included in both
tangential equations is nonzero.
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(a) A minimal degree quartic surface. (b) A quintic surface on the same boundary
conditions.

Figure 1.4: Algebraic surfaces fit on the same boundaries.

The number of variables is the number of free coefficients of a degree n algebraic surface,
which is

(
n+3
3

)
− 1. In the rare case when the rank of the equation system is equal to

that, we have a unique solution. If there are fewer independent equations, the system is
under-determined and there are infinitely many solutions. If there are more, the system is
over-determined, so there are no exact solutions with that degree. The minimum degree is
the smallest degree for which the equation system is not over-determined, and the minimum
degree solution(s) is (are) the element(s) of the solution set of those equations.

An example using a closed curve loop as a set of constraints is shown in Figure 1.3. The
curves are circular arcs and parabolas. The normal vectors at the corners are uniquely
defined by the curves, while the normal fence function is a linear blend.

The minimal degree solution is a quartic surface which is unique (Figure 1.3b), but the
resulting patch contains two components, none of them touching the whole boundary loop.
Using quintic surfaces, the homogenous equation has a 6-dimensional nullspace, from which
any element leads to a solution. However, in our investigation, no nice surface inside that
space has been found, only surfaces like Figures 1.3c and 1.3d. Finally, a degree-6 surface
configuration instantly produced a nice surface; Figure 1.3e shows a patch by taking the
coefficient vector belonging to the numerically lowest singular value. It has also been easy
to find incorrect degree 6 surfaces, as well (Figure 1.3f).

At the same time, unique minimal degree solutions represent in many other cases suitable
surfaces, see Figure 1.4a, which is a minimal (4) degree patch, while a quintic surface is
also suitable, but introduces additional branches (Figure 1.4b).

1.3.1.3 Functional spline

The formula of functional splines, as given by [Li et al., 1990] is

(1− µ) · F − µ ·Gk, (1.19)
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(a) Functional spline with internal inflection. (b) Target curve with internal inflection.

Figure 1.5: Handling inflections.

where F is called base surface and G is called transversal surface, 0 < µ < 1 is a scalar
parameter, 2 ≤ k is an integer parameter. The property of the functional spline surface is
that it connects to the base surface with Gk−1 continuity in the intersection points of the
base and the transversal surface.

In a multi-sided setting, if we have a ribbon surface to interpolate for each side, the base
surface should be the union of the ribbon surfaces, which is simply achieved by F =

∏
Ri.

The transversal surface is a surface that interpolates all boundary curves of the patch. In
special cases, a single surface can be provided, but the general solution is to create one
bounding surface (B̃i) for interpolating each boundary curve and use their product as the
transversal surface.

Simple 2D examples show that functional splines can only handle convex configurations,
having problems with internal inflections. Take, for example, the absurd curve in Figure
1.5a, connecting Q1 and Q2 within the area spanned by H̃1 and H̃2, given by functional
splines, instead of the much nicer curve in Figure 1.5b which the scheme can not repro-
duce. This limitation has been formalized in [Hartmann and Feng, 1993] where the exact
definition of convexity in this regard and the relevant theorems can be found.

Focusing on 3D surfaces, this means that configurations like Figure 1.6a can be solved by
functional splines, but ones like Figure 1.6b cannot. This problem motivated the introduc-
tion of the symmetric parabolic functional splines, as described in [Hartmann, 2001]. The
following equation has been proposed:

(1− λ) · Fa ·Gk
b − λ · Fb ·Gk

a = 0, (1.20)

where F̃a is a surface touching all the locally convex boundaries, F̃b is a surface touching
all the locally concave boundaries, G̃a and G̃b intersect F̃a and F̃b respectively at the
appropriate boundaries, and 0 < λ < 1 is a scalar parameter.

Using the entities Ri and Bi, let A ⊂ {1, 2, . . . , n} be an index set denoting the ribbon
surfaces with the same convexity. Then fa =

∏
i∈ARi, fb =

∏
i/∈ARi, ga =

∏
i∈ABi,
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(a) Simple 3-sided configuration. (b) Simple 6-sided configuration.

Figure 1.6: Sample inputs and patches for ribbon-based implicit surfaces.

gb =
∏

i/∈ABi.

More complex boundary constraints can be solved using symmetric functional splines, see
Figure 1.7. In this case, the odd-numbered boundaries are in set A and the even-numbered
ones in its complement.

1.3.2 Notes on I-patches

1.3.2.1 Preliminaries

Multi-sided I-patches are defined by a loop of 3D curves; each curve C̃i is the intersection
of two surfaces given in implicit form C̃i = R̃i

⋂
B̃i, where R̃i denotes the ribbon surface to

which the patch will smoothly connect, and B̃i denotes the bounding surface that defines
the intersection. The equation of I-patches in [Várady et al., 2001] was given in the following
polynomial form:

I =
n∑

i=1

wiRi

∏
j ̸=i

B2
j + w

n∏
j=1

B2
j , (1.21)

where the wi-s are scalar weights associated with the individual sides and w is a central
weight that influences the fullness of the patch. It is easy to demonstrate this concept with
a 3-sided patch, given as

I = w1R1B
2
2B

2
3 + w2R2B

2
3B

2
1 + w3R3B

2
1B

2
2 + wB2

1B
2
2B

2
3 . (1.22)

This I-patch will interpolate the boundary curves. For example, take the curve C̃1. The
first term will be zero due to R1 = 0, and the other three terms due to B1 = 0, so for the
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Figure 1.7: 6-sided symmetric functional spline.

points of the boundary curve I = 0. This also shows that the effect of R1 will gradually
vanish as we get close to side 2 or 3, where the bounding functions B2 and B3 become
zero.

The I-patch will smoothly connect to the ribbons, since its gradient vector will be parallel
to theirs. For example, take again boundary curve C̃1, and write the equation as I =

R1G+B2
1H. Then

∇I = ∇R1G+R1∇G+ 2B1∇B1H +B2
1∇H = const · ∇R1, (1.23)

since the second, third, and fourth terms are equal to zero on C̃1. In an analogous way, G2

or higher degree geometric continuity to the ribbons can also be achieved, if the exponent
of the bounding surfaces is three or higher.

It is easy to constrain an I-patch to interpolate an arbitrary 3D point P0. Assuming that
the weights wi have already been fixed, then the value w can be determined by solving
the equation I(P0) = 0, where w is the only unknown. Figure 1.8 shows two variants of a
3-sided patch interpolating two different reference points in the middle.

1.3.2.2 Handling special cases

It should be noted that at the corners of the I-patches, where two ribbons and two bounding
surfaces meet, the gradient vector is always zero. Take, for example, the corner of C̃1 and
C̃2, then the G function in the above expression will be zero due to B2 = 0, so the gradient
will vanish, as well. This can be an advantage or a disadvantage. If two ribbons at the
corner share a common tangent plane, the normal vector of the I-patch will be uniquely
determined. However, if not, a singular vertex is created, see for example point Q1 in
Figure 1.9. Amongst others, this problem motivated the research into corner I-patches
which will be described in 1.5.
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(a) Conic ribbon and
planar bounding surfaces

(b) Contours (c) Contours after changing
the interior fullness

Figure 1.8: A simple 3-sided I-patch.

Figure 1.9: Two ribbon surfaces intersected by the same bounding plane.
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Another special case to be investigated is when two (or more) bounding surfaces coincide.
We demonstrate the problem again through a 3-sided patch. Assume that we have three
boundary curves R̃1

⋂
B̃12, R̃2

⋂
B̃12, and R̃3

⋂
B̃3. Then we can factor out B2

12 from the
equation to obtain

I = B2
12

(
w1R1B

2
3 + w2R2B

2
3 + w3R3B

2
12 + wB2

12B
2
3

)
, (1.24)

which is a branching surface, since neither of the terms interpolates all sides. The solution
to this problem is to collect all ribbon surfaces that belong to the same boundary and
handle them as a single surface in the form of their product. Taking our example,

I = w12(R1R2)B
2
3 + w3R3B

2
12 + wB2

12B
2
3 (1.25)

will yield the correct result. Note that here we can assign only a single weight to R1R2.
An example is shown in Figure 1.9. This I-patch (orange) connects to three curved ribbon
surfaces; the two blue ribbons (vertical sweeps) are intersected by the same planar bounding
surface.

1.3.2.3 I-segments and I-lofts

We introduce new entities related to I-patches. I-segments are the 2D counterparts of
I-patches, where two implicit lines are being blended. I-lofts are 3D surfaces based on the
same logic, combining just two ribbon surfaces.

I-segments, defined by quartic polynomials, are more general curves than conics defined
by Liming’s method. As a result, they provide more shape control and are capable of
handling inflections. Given two tangential lines L̃i and two local bounding lines H̃i in the
plane containing the tangential lines, the segment runs from one intersection point to the
other. We use the following polynomial formula:

I = w1L1H
2
2 + w2L2H

2
1 + wH2

1H
2
2 . (1.26)

We can use I-segments to analyze and better understand the properties of the I-patch
representation. For example, in Figure 1.10, have a deeper look into the convexity issue
previously outlined concerning functional splines in 1.3.1.3.

In Figure 1.10a the functional spline curve matches the orientation of the ribbons. In 1.10b
we have an I-segment with inconsistent orientation, yielding a wrong curve, however, 1.10c
is consistent, and we obtain a good result. In 1.10d the functional spline curve cannot
properly match the given orientations, and thus a nonsense curve is obtained. Fig. 1.10e
shows an incorrectly oriented I-segment, but in 1.10f the expected result is obtained. It
can be seen that the functional spline has problems with creating inflections, while the
I-segment can solve these if the orientation of the tangential lines is set in a consistent way.
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(a) Functional spline (b) I-segment with wrong orienta-
tion

(c) I-segment with good orientation

(d) Functional spline (e) I-segment with wrong orienta-
tion

(f) I-segment with good orientation

Figure 1.10: 2D curves represented by functional splines and I-segments.

This shows that in the case of I-patches, the orientation of the ribbon surfaces is especially
important. We will look at this in 1.3.2.6.

Let us move to 3D; I-lofts combine two tangent planes P̃1 and P̃2 at two adjacent corners
with local bounding planes M̃1 and M̃2. Then

I = w1P1M
2
2 + w2P2M

2
1 + wM2

1M
2
2 . (1.27)

See an input configuration for I-lofts in Figure 1.11.

I-lofts are particularly useful for creating implicit ribbons that adhere to prescribed normal
vectors in the corner points and have a smooth surface. These applications will be discussed
in 2.3.1.2 and 2.4.1.

1.3.2.4 Relation between classical methods and I-patches

It is easy to see that a Liming-curve

Q = (1− λ) · L1 · L2 − λ · C2 (1.28)

is a “1-sided” I-patch in 2D with R1 = L1 · L2, B1 = C and w1
w = 1−λ

λ , as the equation of
a 1-sided I-patch is

I = w1R1 + wB2
1 . (1.29)

It is also true that with multi-sided 2D I-patches Liming-curves can still be reproduced
with a correct setting of coefficients.
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P2P1

M1
~

M2
~

~ ~

Figure 1.11: Input configuration for an I-loft.

Theorem 1. Let L̃i (i = 1, 2, 3, 4) be four distinct tangent lines, Pi (i = 1, 2, 3, 4) the
points of tangency. Let C̃1 be a line through P1 and P2, C̃2 through P3 and P4. Then, the
family of two-sided I-patches

Iw := w1 · L1 · L2 · C2
2 + w2 · L3 · L4 · C2

1 + w · C2
1 · C2

2 (1.30)

fulfills the tangential conditions. Moreover, if there exists a quadratic curve satisfying the
constrained tangents, the I-patch Ĩ reproduces it with well-chosen coefficients.

The related proof can be found in Appendix A.

This means that we can reproduce quadratic curves with the I-patch scheme with suitable
geometric entities and coefficients supplied to it. If the given tangent lines are such that a
quadratic curve tangential to all of them exists, there are coefficients by means of which it
can be reproduced.

In Figures 1.12a and 1.12b you can see the reproducibility of a hyperbola by choosing four
points and four tangents of it, and setting in the first case w1 = w2 = 4/9, w0 = 32/81. In
the second example, the correct weights are w1 = 3/4, w2 = 4/9, and w0 = 985/1296.

In Figure 1.13, it can be seen that by changing the weights we can achieve shapes that are
similar, but different to the hyperbola.

1.3.2.5 The rational formulation

Here we show that I-patches can also be interpreted based on distances. This helps to
better understand the formulation and set certain shape parameters. A somewhat similar
approach occurs in classical geometry, as well. Take an ellipse and its implicit equation
x2/a2 + y2/b2 − 1 = 0, a ≥ b. It can be interpreted as the locus of points, where the sum
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(a) Reproducing a hyperbola. (b) Reproducing a hyperbola with different tangents.

Figure 1.12: Representing a hyperbola with the I-patch scheme
Points and tangents are blue, bounding lines are red, the resulting
curve is purple.

(a) w1 = 0.5, w2 = 1.0 (b) w1 = 0.8, w2 = 2.0

Figure 1.13: Modifying the weights and changing the shape of the curve.
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of the Euclidean distances from two focal points is constant, i.e.,

D1(x, y) +D2(x, y) = ∥(x, y)− F1∥+ ∥(x, y)− F2∥ = 2a, (1.31)

where F1 = (−c, 0), F2 = (c, 0) and c2 = a2 − b2.

We generalize this for I-patches and combine distances from the primitive surfaces. We
take di = Ri(P) and search for the locus of points where

∑n
i=1 di = d0; however, in order

to ensure the interpolation property, we need to involve the bounding surfaces, as well,
and apply weighted algebraic distances di in the form of di = wiRi(P)/B2

i (P). These can
be derived from the polynomial I-patch equation, if we divide all terms by

∏n
j=1B

2
j . For

example, a 3-sided I-patch in rational form is the following:

I = D1 +D2 +D3 −D0 =
w1R1

B2
1

+
w2R2

B2
2

+
w3R3

B2
3

+ w0. (1.32)

In fact, it is easy to show that rational-form I-patches can reproduce certain standard
implicit surfaces. For example, combining three orthogonal elliptic cylinders as ribbons
and the three related planar bounding surfaces, one can exactly reproduce an ellipsoid:

I(x, y, z) =

x2

a2
+

y2

b2
− 1

z2
+

y2

b2
+

z2

c2
− 1

x2
+

z2

c2
+

x2

a2
− 1

y2
+

(
1

a2
+

1

b2
+

1

c2

)

=

(
x2

a2
+

y2

b2
+

z2

c2
− 1

)
(x2y2 + y2z2 + z2x2)

x2y2z2
. (1.33)

This expression contains the equation of the ellipsoid multiplied by a second term, which
is an isolated point at the origin. When a = b = c = 1, we obtain an octant of a sphere
with unit radius. In Figure 1.14 a sequence of isosurfaces d1 = w1R1/B

2
1 = const is shown.

The combination of this sort of algebraic distance fields produces the final I-patch.

An advantage of the rational formulation is that it requires fewer operations to be evaluated.
While evaluating an n-sided I-patch in the original form takes (n + 1) · n multiplication,
evaluating it in the rational form needs only n multiplication and n division. This is an
asymptotical difference, thus more important when the number of sides is higher.

The rational formula nicely works for the interior points of the patch; however, it is singular,
i.e. degenerates to 0/0 expressions in the vicinity of the boundary curves. In order to avoid
this, there we use another formula; close to C̃i – i.e. where the divisor B2

1 becomes so
small that it hurts the precision with the used floating point representation – multiply the
equation by B2

i /wi. For example, take curve C̃1 and use

I = R1 +

(
n∑

i=2

di + d0

)
B2

1/w1. (1.34)

In the points of C̃1 both terms are zero; in the close vicinity of C̃1 the quadratic expression
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Figure 1.14: Different isosurfaces of a weighted algebraic distance.

B2
1/w1 remains small, thus the I-patch behaves as R̃1, satisfying our expectations.

As in the vicinity of the corner points, two of the terms degenerate to 0/0, assuming e.g.
that we are close to both B̃1 and B̃2, the formula

I = R1B
2
2 +R2B

2
1 +

(
n∑

i=3

di + d0

)
B2

1B
2
2/(w1w2) (1.35)

can be used. See Figure 1.15 for an example.

As the parts evaluated with the different formulae are connecting with G∞ (they be-
ing a scalar function multiple of each other), the surface remains aesthetic, however,
C1 continuity is not fulfilled, the magnitude of the gradient changes in the interior.

The rational formulation helps to efficiently evaluate the surface in the interior, and set
the individual weights wi (see e.g. 2.3.1.3).

1.3.2.6 Consistent orientation

In contrast to functional splines, the orientation of the ribbons is crucial for I-patches,
as it was shown during the investigations with I-segments earlier. These ribbons occur in
separate terms in the equation (not as a single product), and for each ribbon we require
that the local gradient must have the same direction as that of the final patch.

It is a basic assumption that we wish to keep the I-patch within the union of the positive
half-spaces of the bounding surfaces, i.e., we envision the shape on the same side of the
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(a) Entire patch in the same color
(b) Patch colored based on evaluation method;

blue: Eq. 1.32, green: Eq. 1.34, red: Eq. 1.35

Figure 1.15: Raycasted I-patch evaluated using the rational form in the inte-
rior and the modified rational forms along the boundaries.

B̃i-s. (It needs to be checked whether this condition is satisfied, and modify some of the
bounding surfaces, when needed.)

We also assume that a consistently oriented, piecewise normal vector fence exists for the
boundary loop, as shown in Figure 1.16. Matching this will define the correct orientation
(sign) of the ribbon surfaces. This means we have to set the orientation of all ribbons such
that their gradients point in the same (or opposite) direction as the prescribed normal
fence. Naturally, after the ribbons have been oriented, we can only set positive terms as
the corresponding coefficients.

1.3.3 Summary

I have analyzed the properties of implicit curves and surfaces defined by boundary con-
straints – with an emphasis on I-patches – and have described criteria to acquire a con-
nected, non-self-intersecting surface. For an I-patch interpolating a closed curve loop of
boundary curves with a consistent normal fence, a formula is proposed to set initial coeffi-
cients automatically. Methods for handling special cases – coinciding or intersecting ribbon
or bounding surfaces – were also introduced. It has been shown that the I-patch has an al-
ternative evaluation called the rational form which computationally is more efficient in the
interior, and that it can be viewed as a generalization of classical distance-based implicit
blending methods.

These results were published in [Sipos et al., 2020], [Sipos et al., 2022b], and [Sipos, 2022b].
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Figure 1.16: Patch with a consistent normal fence; all ribbons must have the
same (e.g. positive) half-space in the direction of the fence.

1.4 The faithful distance field of I-patches

1.4.1 Motivation

The computation of distances from a given surface, or the creation of an offset surface
by a given distance, are heavily used operations in several applications, such as design,
geometric intersections and interrogations, and data approximation. One advantage of
implicit surfaces is that they possess a natural distance field from their zero isosurfaces.
Unfortunately, algebraic distances, even when multiplied by a carefully chosen scalar factor,
do not yield Euclidean distances, except for planes.

In the case of I-patches, neither the original algebraic nor the rational form yields a suitably
close approximation of the geometric distance from the surface, both have high variation.

A frequently applied, practical method for enhancing distance fields is to normalize the
implicit equation by the norm of its gradient [Taubin, 1994]. This is a good solution to
obtain approximate Euclidean distances in the vicinity of the zero isosurface, but these
expressions contain square roots and may exhibit singularities. They also deviate from the
correct distance when we move farther away from the implicit surface.

1.4.2 Formulation

We propose a normalization for I-patches that produces a good approximation of the
Euclidean distance field, not only in the vicinity of the surface, but in a much wider range.
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The literature often uses the terminology “faithful” for such distances [Lukács et al., 1998],
and we also retain this adjective.

Using the notation Ai = wi/B
2
i , we can formulate the rational equation of the I-patch as

a weighted sum of ribbon surfaces R̃i, multiplied by blending functions:

I =

n∑
i=1

Ri ·Ai − w0. (1.36)

We derive a faithful normalization by dividing with the sum of the blending functions:

Î =

∑n
i=1Ri ·Ai − w0∑n

i=1Ai
. (1.37)

Examining an algebraic offset of the normalized I-patch, it was recognized that

Î − δ =

∑n
i=1(Ri − δ) ·Ai − w0∑n

i=1Ai
. (1.38)

In other words, the offset of the normalized I-patch is also a normalized I-patch, created
from ribbon offsets and blended by the same Ai functions (i.e., the same bounding surfaces).

Note that the same principle also works with the polynomial form of the I-patch:

Î =

∑n
i=1wiRi

∏
j ̸=iB

2
j − w0

∏n
i=1B

2
i∑n

i=1wi
∏

j ̸=iB
2
j

. (1.39)

This is a more complex, but equivalent equation, which can be evaluated on the boundary,
as well.

1.4.3 Analysis

First, let us demonstrate this concept in 2D using an I-segment S̃, which is a planar implicit
curve, that blends together two lines L̃1 and L̃2 (Fig. 1.17). We wish to compute an offset
of the I-segment that smoothly connects the accurately displaced offset lines L̃1 − d and
L̃2 − d, and expect to obtain a good distance field between them. Figure 1.17a shows the
distribution of the original (algebraic) distances, Figure 1.17b presents the offsets defined
by the rational form, and Figure 1.17c shows the distance field after gradient normalization,
in all of which one can observe the uneven and unproportional distribution of the offset
curves. Our proposed normalization in Figure 1.17d shows a faithful distance field.

The faithful distance is only usable in the positive half-spaces of the boundings. In other
parts of the space, branches of the I-segment or I-patch may exist, thus the distance function
can give nonsense results. The previously analyzed I-segment and many of its offsets can
be seen in Figure 1.18a. In Figure 1.18b, a quantitative analysis of the gradient lengths of
the faithful distance function can be seen.
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(a) Original equation. (b) Rational form.

(c) Gradient normalization. (d) Faithful normalization.

Figure 1.17: Offsets of an I-segment using different forms of equation.

(a) Numerous faithful offsets of an I-segment. (b) Gradient magnitude of the faithful distance field.

Figure 1.18: Analysis of the faithful distance field of an I-segment.

The faithfulness of the formulation in 3D depends on the distance field of the ribbons.
For this reason, it is recommended to use ribbons that either have an evaluable Euclidean
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distance field, or to which the faithful approach can be used – like I-lofts. In the latter
case, the equation of the faithful I-loft ribbon is

R̂i =
wi,1Pi,1M

2
i,2 + wi,2Pi,2M

2
i,1 − wi,0M

2
i,1M

2
i,2

wi,1M2
i,2 + wi,2M2

i,1

, (1.40)

whereas the equation of the patch is

Î =

∑n
i=1wiR̂i/B

2
i − w0∑n

i=1wi/B2
i

, (1.41)

and substituting results in

Î =

n∑
i=1

wi/B
2
i · (wi,1Pi,1M

2
i,2 + wi,2Pi,2M

2
i,1 − wi,0M

2
i,1M

2
i,2)

(wi,1M2
i,2 + wi,2M2

i,1) ·
∑n

i=1wi/B2
i

− w0∑n
i=1wi/B2

i

. (1.42)

With regard to the Pi,j-s, we can observe that the same property that was outlined in
Eq. 1.38 holds, i.e.

n∑
i=1

wi/B
2
i · (wi,1(Pi,1 − δ)M2

i,2 + wi,2(Pi,2 − δ)M2
i,1 − wi,0M

2
i,1M

2
i,2)

(wi,1M2
i,2 + wi,2M2

i,1) ·
∑n

i=1wi/B2
i

− w0∑n
i=1wi/B2

i

=

=
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wi/B
2
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2
i,2 + wi,2Pi,2M

2
i,1 − wi,0M

2
i,1M

2
i,2)

(wi,1M2
i,2 + wi,2M2

i,1) ·
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i=1wi/B2
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− w0∑n
i=1wi/B2
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−

−
n∑

i=1

wi/B
2
i · (wi,1δM

2
i,2 + wi,2δM

2
i,1)

(wi,1M2
i,2 + wi,2M2

i,1) ·
∑n

i=1wi/B2
i

= Î − δ (1.43)

As the P̃i,j-s are planes (thus an Euclidean distance function is available), the I-patch still
behaves in a faithful manner with respect to them, although the weight functions are more
complex.

In Figure 1.19 an I-patch is shown with its offset, using mean curvature maps. Figures 1.19a
and 1.19b show the patch and its offset isosurface, and Figure 1.20 shows four superimposed
offset patches with d = −5, 0, 5 and 10.

Using the faithful distance metric, offsets of I-patches or I-segments can be directly com-
puted yielding reasonably good approximations of Euclidean distances. Approximating
data points using I-patches or I-lofts becomes easy and computationally efficient since we
only need to substitute into the above normalized equations, and optimize accordingly.
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(a) Original surface. (b) Offset surface.

Figure 1.19: Offsetting an I-patch.

Figure 1.20: Multiple offsets of an I-patch.

1.4.4 Summary

I have proposed a “faithful” distance metric for I-patches, which inherits the distance from
the ribbon surfaces that define the patch along the boundaries. The faithful distance metric
is a better approximation of the Euclidean distance, than the algebraic function and in a
much greater vicinity of the surface than the widely used gradient normalized formulations.
This result was published in [Sipos et al., 2022a].
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(a) Input (ribbons and bounding
surfaces) for an I-patch.

(b) Input (corners and bounding
surfaces) for a corner I-
patch.

(c) A resulting patch.

Figure 1.21: I-patch and corner I-patch.

1.5 The corner I-patch representation

We have seen some limitations of I-patches earlier: their singularity in their corner points
and the difficulty of creating proper ribbon and bounding surfaces in all cases. This moti-
vated my research to create implicit patches that 1) have a fixed bounding surface structure,
enclosing finite volume spaces, 2) use simpler geometric entities that the often complex rib-
bon surfaces, and 3) are non-singular along the surface.

To achieve this, we propose combining corner interpolants instead of side interpolants, this
concept is also used in case of some parametric surface representations in the literature.

1.5.1 Basic equation

A corner I-patch is composed of corner interpolants S̃1,2, S̃2,3, . . . , S̃n,1 and bounding sur-
faces B̃1, B̃2, . . . , B̃n (neither of them coincides with another one), such that S̃i,i+1 denotes
the corner interpolant between the ith and the (i+ 1)st boundaries.

Then, the equation of the corner I-patch is

I =
n∑

i=1

wi,i+1 · Si,i+1 ·
n∏

j=1
j ̸=i,j ̸=i+1

B2
j

+

n∑
i=1

wi ·
n∏

j=1
j ̸=i

B2
j

+ w
n∏

i=1

B2
i , (1.44)

where the wi,i+1 scalars can be merged into Si,i+1, as multiplying with a nonzero number
does not change the implicit isosurface, only its distance metric. See an example of corner
interpolants and bounding surfaces in Figure 1.21b, in comparison with the input used for
an I-patch in Figure 1.21a.

Some important properties of this representation are:
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• In each corner, the patch connects with G1 continuity to the corner interpolants.
(This means that the gradient vectors of the surface have the same direction as the
gradients of the interpolants there.)

• Along the ith boundary, the shape of the surface does not depend on w and wj for
j ̸= i.

The wi,i+1 coefficients will be called corner coefficients, wi-s are the side coefficients and
w is the central coefficient.

The wi and w parameters can be set in a process similar to I-patches forcing the patch
to interpolate one point on each boundary and one point in the interior of the patch. As
the shape of the surface on the ith boundary depends only on wi, each of those can be set
separately, and finally, w can be set to interpolate an interior point, i.e.:

wi := −
Si−1,i(Pi) ·B2

i+1(Pi) + Si,i+1(Pi) ·B2
i−1(Pi)

B2
i−1(Pi) ·B2

i+1(Pi)
, (1.45)

and

w := −

n∑
i=1

Si,i+1(P0) ·
n∏

j=1
j ̸=i,j ̸=i+1

B2
j (P0)

+
n∑

i=1

wi ·
n∏

j=1
j ̸=i

B2
j (P0)


n∏

i=1

B2
i (P0)

, (1.46)

where Pi is a point on the ith side, P0 is a point in the interior to interpolate. The
parameters can be computed in this order, i.e. first all wi, then w.

1.5.2 Comparison to I-patches

A disadvantage of I-patches, discussed earlier, is that their gradient is a zero vector in
the corner points. This may lead to poor surface quality and generally should be avoided.
However, the gradient of corner I-patches is the gradient of the corner interpolant times a
nonzero number.

The corner I-patch along the ith boundary connects smoothly to the implicit surface rep-
resented by the equation

Si−1,i ·B2
i+1 + Si,i+1 ·B2

i−1 + wi ·B2
i−1 ·B2

i+1. (1.47)

This represents an I-loft (1.3.2.3). Corner I-patches are thus similar (but not equivalent)
to I-patches defined by ribbons that are I-lofts. This is because the equation of the I-patch
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(a) Corner I-patch (b) I-patch

Figure 1.22: Corner- and regular I-patch approximating an ellipsoid octant
with semi-axes 2, 1 and 1; colored using Gaussian curvature;
red: +3, green: 0, blue: −3

defined by the ribbons in Equation 1.47 would be

I =
n∑

i=1

Si,i+1(B
2
i+1B

2
i−1 +B2

i B
2
i−2)

n∏
j=1

j ̸=i,j ̸=i+1

B2
j

+

+
n∑

i=1

wiB
2
i−1B

2
i+1

n∏
j=1
j ̸=i

B2
j

+ w
n∏

i=1

B2
i , (1.48)

which is not equivalent to Equation 1.44. Indeed, the factor (B2
i+1B

2
i−1 + B2

i B
2
i−2) causes

the gradient of the I-patch to be zero at the corner points. Accordingly, corner I-patches
have a lower degree of 2n, as opposed to the 2n+ 2 for this kind of I-patches.

A comparison of a corner I-patch and an I-patch with the same boundary curves can be
seen in Figure 1.22. The patches interpolate the corner points of an ellipsoid octant with
semi-axes 2, 1, and 1, but their boundary curves are – as discussed above – I-segments.
Colored based on Gaussian curvature, the artifacts near the corners of the I-patch can be
visually analyzed.

1.5.3 Faithful distance

A faithful distance function can be defined for the corner I-patch. As seen in e.g. Eq. 1.37,
the divisor is the sum of the factors multiplied with the tangential (there ribbon, here
corner) surfaces:
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Figure 1.23: Offsets of a faithful corner I-patch (same as in Figure 1.22a,
offset values: −0.2,−0.1, 0, 0.1, 0.2)

Î =

n∑
i=1

wi,i+1 · Si,i+1 ·
n∏

j=1
j ̸=i,j ̸=i+1

B2
j

+
n∑

i=1

wi ·
n∏

j=1
j ̸=i

B2
j

+ w
n∏

i=1

B2
i

n∑
i=1

wi,i+1 ·
n∏

j=1
j ̸=i,j ̸=i+1

B2
j


. (1.49)

It is straightforward to verify that the ˜(Î − δ) isosurface is equivalent to the faithful corner
I-patch defined by the corners ˜(Si,i+1 − δ).

In Figure 1.23, five superimposed offset patches of the corner I-patch in Figure 1.22a can
be seen.

1.5.4 Corner I-patch with multiple loops

1.5.4.1 Motivation and equation

In some cases, an isosurface must be represented by several disjoint surface elements. In
Marching Cubes [Lorensen and Cline, 1987] for example, 7 of the 15 basic configurations
result in a surface represented by more than one polygon. These surface elements could
be represented separately, but in an implicit representation, it is advantageous to have
the same implicit function on a well-defined 3D volume, otherwise, the piecewise implicit
function would likely have discontinuities.

Fortunately, corner I-patches are capable of achieving this with a little modification. Con-
sider m separate boundary loops where the lth of those is nl-sided and for each of them
the previously defined corner interpolants S̃l

1,2, S̃
l
2,3, . . . , S̃

l
nl,1

and the bounding surfaces
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(a) Two 3-sided loops. (b) A 3 and a 4-sided loops.

Figure 1.24: Multiloop patches.

B̃l
1, B̃

l
2, . . . , B̃

l
nl

. Then the new equation is

I =
m∑
l=1

nl∑
i=1

wl,i,i+1 · Sl
i,i+1 ·

m∏
k=1

nk∏
j=1

k ̸=l∨(j ̸=i∧j ̸=i+1)

(Bk
j )

2

+

+

m∑
l=1
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i=1

wl,i ·
m∏
k=1

nk∏
j=1

k ̸=l∨j ̸=i

(Bk
j )

2

+ w

m∏
l=1

nl∏
i=1

(Bl
i)
2. (1.50)

The meaning of this is that each corner interpolant is multiplied by all the bounding
surfaces, except the two ones beside it, corresponding to the next and previous boundaries
of the patch. A simple multiloop surface can be seen in Figure 1.24a, with two loops each
composed of three corners.

1.5.4.2 Handling coinciding bounding surfaces

In a multiloop setting, especially if working in a grid of cubes, some bounding surfaces will
likely coincide. Consider, for example, the configuration in Figure 1.24b (a configuration
of Marching Cubes), where one of the boundings for the 3-sided loop coincides with one
of those of the 4-sided loop. The problem is that when two bounding surfaces coincide,
they will be in all the members of the weighted sum and thus can be factored out from the
equation.

With regard to I-patches, a modified equation for this difficult case has been proposed in
1.3.2.2 and in [Sipos et al., 2020], however, it takes advantage of the 1-to-1 relation between
ribbons and bounding surfaces which is not applicable to corner patches.
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The proposed solution is as follows. When computing the product of the bounding sur-
faces not neighboring the respective corner, also omit those that coincide with one of the
neighboring ones.

The related equation is:

I =
m∑
l=1

nl∑
i=1

wl,i,i+1 · Sl
i,i+1 ·

m∏
k=1

nk∏
j=1

Bk
j
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,Bk

j
̸≡Bl

i−1

(Bk
j )

2

+

+
m∑
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nl∑
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wl,i ·
m∏
k=1
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j=1

Bk
j
̸≡Bl

i

(Bk
j )

2

+ w
m∏
l=1

nl∏
i=1

(Bl
i)
2. (1.51)

This means that each corner is multiplied with the product of all bounding surfaces (re-
gardless of which loop they are in) unless they coincide with one of its neighbors. Side
components for a given side are the product of all bounding surfaces, other than those
coinciding with the bounding surface representing that side. This formulation keeps the
properties highlighted regarding the original equation (G1 continuity to corner interpolants,
and sides being only affected by the corresponding coefficient).

A practical implementation for evaluating this is to store all bounding surfaces in an array,
and only store indices for them in the loops. When computing the products, we only have
to check for the non-equality of the indices.

1.5.5 Discussion

1.5.5.1 Limitations

When connecting neighboring patches with geometric continuity, we need them to coincide
at their common boundary in both a positional and a differential sense. As the corner
I-patch along B̃i connects to the surface defined by Equation 1.47, the patch on the other
side of B̃i also has to connect to it. This, however, only happens if B̃i−1 and B̃i+1 are
identical to the corresponding bounding surfaces for the other patch.

This is not easily fulfilled when creating a general topology patchwork, but it is straightfor-
ward if the space is subdivided by planes, creating finite-volume cells. All edges of the cell
structure are the intersection line of two planes, corner points are points on these edges.
Any such cell structure works with corner I-patches. The simplest of those is of course a
regular grid of cubes.

When used in regular cell structures, the S̃i,j and B̃i surfaces are all planes. Thus, the patch
itself is a polynomial surface, with a degree of twice the number of sides (see Equation 1.44).
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(a) A 3-sided patch. (b) A 6-sided patch. (c) A patch consisting of two dis-
joint components.

Figure 1.25: Corner I-patches inside the unit cube.

(a) Base patch. (b) Changing boundaries. (c) Changing the interior.

Figure 1.26: Corner I-patches with the same corner interpolants and different
coefficients.

1.5.5.2 Examples

In Figures 1.25 and 1.26 corner patches are defined inside the unit cube. Figure 1.25a is
a 3-sided surface near a corner of the cube. Figure 1.25b is a 6-sided patch that intersects
all faces of the cube.

In Figure 1.26, three patches with the same corners but different coefficients can be seen.
They are set using the algorithm presented in 1.5.1, i.e. on each side and in the interior one
point is fixed, and respective coefficients are calculated from them. Between Figure 1.26a
and 1.26b, two side points; between Figure 1.26a and 1.26c, the interior point is changed.
The numerical data for these patches can be found in Table 1.1.

A corner I-patch with a non-planar corner interpolant can be examined in Figure 1.27. On
the left, a patch with three planar interpolants (same as in Figure 1.22a) can be seen, while
on the right, one of the interpolants is changed to a sphere. This somewhat modifies the
shape, but the patch overall remains stable. It is worth noting that here, the patch does
not interpolate the curvature of the sphere, as the scheme used is only G1.

In the next examples, a sparse (9×9×9) voxel array was created. For each cell, based on
the eight isovalues in the corner, polyline loops were generated from the estimated edge
intersections. Ambiguities (when on a face all four edges have an intersection) were resolved
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Corner points
[0, 0.5, 1] [0, 0.8, 0] [1, 0.5, 0] [1, 0, 0.5] [0.5, 0, 1]

Patch #1
Side points

[0, 0.6, 0.5] [0.5, 0.6, 0], [1, 0.35, 0.35] [0.65, 0, 0.65] [0.35, 0.35, 1]

Side coefficients
0.6 0.6 −2.34 2.34 −2.34

Interior point: [0.5, 0.5, 0.5] Central coefficient: −7.77

Patch #2
Side points

[0, 0.6, 0.5] [0.5,0.8, 0] [1, 0.35, 0.35] [0.55, 0,0.55] [0.35, 0.35, 1]

Side coefficients
0.6 2.2 −2.34 0.45 −2.34

Interior point: [0.5, 0.5, 0.5] Central coefficient: −8.94

Patch #3
Side points

[0, 0.6, 0.5] [0.5, 0.6, 0], [1, 0.35, 0.35] [0.65, 0, 0.65] [0.35, 0.35, 1]

Side coefficients
0.6 0.6 −2.34 2.34 −2.34

Interior point: [0.5,0.2, 0.5] Central coefficient: 55.83

Table 1.1: Points and coefficients for the patches in Figure 1.26. All patches are in the [0; 1]3 cube.
Differences from Patch #1 are bold.

by minimizing the sum of distances between the two pairs. This resulted in one or more
loops of closed polylines.

Then, in each of the isovertices, a plane was introduced, with its normal pointing towards
the positive cell corner. From those, and the faces of the cube as bounding surfaces, corner
I-patches were generated. Coefficients for the corner components were set to 1, and side
coefficients were calculated with the triangle rule or the tetragon rule (see Appendix B).
The central coefficient was set to 0.

In the first example (Figure 1.28) two sphere-like objects can be seen which are close to
each other. Notice that the brown surfaces at their closest points are represented with
the same corner I-patch. In the second example (Figure 1.29) a voxel value was modified,
extending the volume of the bigger object. In Figure 1.30 a hole was drilled into the object
by modifying isovalues in a line.

In the next examples, the scheme was modified so that when introducing the corner planes,
an exact implicit function is used for both exactly calculating the isovertex and using an
exact gradient. This can be useful in cases where evaluating the original functions would
be very costly but approximating them with piecewise polynomial surfaces could bring a
reduction in both storage and computation costs.

In Figures 1.31 and 1.32 an ellipsoid can be seen with a lower and a higher resolution cell
structure. It can be observed that although the boundary curves approximate the original
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(a) Three plane interpolants. (b) Two plane and one sphere interpolants.

Figure 1.27: Changing a corner interpolant to a sphere.

Figure 1.28: Disjoint surfaces generated from voxel data.
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Figure 1.29: Enlarging the object by modifying a voxel value.

Figure 1.30: Drilling a hole into the object by modifying voxel values.
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Figure 1.31: Ellipsoid with lower resolution.

surface well, the interior of some surfaces is less smooth. Optimization of the coefficients
is therefore an important area of future research.

1.5.6 Summary

I have developed a new implicit representation, that combines corner interpolants, called
corner I-patches, and published in [Sipos, 2022a] and the journal paper [Sipos, 2023]. Using
corner interpolants that are typically planar surfaces, relatively complex patches can be
represented. Corner I-patches are capable of representing surfaces consisting of multiple
sheets, each defined by a separate loop of corners, which makes them especially useful in
Marching Cubes-like cell-based surface reconstruction.
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Figure 1.32: Ellipsoid with higher resolution.
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Chapter 2

Applications of I-patches in freeform
modeling and approximation

2.1 Overview

One of the major problems in Computer-Aided Design is the creation of mathematical
representations for freeform surfaces. These typically describe complex geometries that
cannot be defined by regular shapes such as planes, cylinders, or simple sweeps. Freeform
modeling schemes have the following useful features:

• they are capable of approximating any smooth target surface, with a sufficient order;
and

• a small change in the control data results in a small and local change on the surface.

It has already been mentioned in the Introduction that most surface elements used in
freeform design are four-sided. The reason for this is the convenience of tensor-product
parametric surfaces. Their general equation is

P(u, v) =

n∑
i=0

m∑
j=0

Xi,j · fi(u) · gj(v), (2.1)

with u, v ∈ [0, 1], where Xi,j can be called control vertices. The four boundary curves of
the patch are naturally reproduced by fixing u = 0, u = 1, v = 0, and v = 1.

In various applications, the use of multi-sided (i.e. ≥ 4) surfaces is required. These include
vertex blending and hole filling. Also in certain design situations, the quality of surfaces
produced by the composition of multi-sided patches is better than that of only four-sided
ones. It should be mentioned that implicit surfaces, representing half-space boundaries are
indifferent to this distinction: modeling a four- and a non-four-sided patch in implicit form
generally has the same difficulty.
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Approximating structured or unorganized point data with freeform surfaces is also an
important operation, especially in reverse engineering [Várady et al., 1997]. Least-squares
fitting is the most widely used technique, however, most surface representations do not have
a directly evaluable Euclidean distance metric, thus in most cases, iterative minimization
approaches are utilized.

In the case of fitting B-spline surfaces, generally successive approximation is performed.
This means that starting from an initial estimation of parameter values for data points, in
alternating steps, parameter values are updated, and distance from those points is mini-
mized. This is a stable, but slow algorithm. In contrast, if our representation of choice is
an implicit signed distance function (SDF), the solution would be directly computable by
solving the normal equation. Implicit faithful distance fields are in between; although not
SDFs, they provide a reasonably good approximation for them.
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2.2 Previous work

In this chapter, we deal with three important application areas of I-patches, namely poly-
hedral design, vertex blending, and surface approximation. These areas have been heavily
investigated in the CAGD literature, and undoubtedly parametric surface models are pre-
dominantly used. Here we collect a few important publications to overview the state-of-
the-art and show how implicit modeling can be fitted into the global image.

2.2.1 Polyhedral design

Modeling complex surfaces based on control polyhedra is one of the main areas in CAGD,
where a freeform shape is constructed indirectly by means of a complex control polyhe-
dron. As we want to define a composite surface that mimics the shape described by the
polyhedron, it is required to support multi-sided configurations and vertices with arbitrary
valencies.

The primary method with a vast literature that is used for polyhedral design is recursive
subdivision. It includes the popular Catmull-Clark [Catmull and Clark, 1978] and Doo-
Sabin [Doo and Sabin, 1978] algorithms, which produce a sequence of polyhedra converging
to a smooth limit surface. It is a well-known result that these limit surfaces are smoothly
connected B-spline surfaces, but in extraordinary points, they have visible shape artifacts.

Direct polyhedral methods emerged in the 1990s, see [Peters, 1991], using quadrilateral
patches, where the main difficulty was splitting the multi-sided regions, while retaining the
surface smoothness.

Later, various multi-sided parametric patches were proposed to avoid the problem of inter-
nal discontinuities. These include S-patches [Loop and DeRose, 1990], SuperD patches [Rock-
wood and Gao, 2018] and generalized Bézier patches [Szörfi and Várady, 2022].

The use of implicit surfaces for polyhedral design has been less notable. The application of
rational A-patches [Xu et al., 2001] to create C1-continuous surfaces from triangle meshes,
interpolating its vertices could be considered a similar method, although the resulting
surface is very different from what a subdivision method would produce.

2.2.2 Vertex blending

A crucial issue in geometric modeling is to create smooth transitions between adjacent
primary surfaces. There is a rich literature of blending (filleting) methods, nevertheless
our interest here is to produce vertex blends, i.e. small connecting pieces that connect
converging edge blends as well as faces at a given vertex.

A general solution to this problem is setback vertex blending, see the early papers [Braid,
1997] and [Várady and Rockwood, 1997]. The terminations of the edge blends are pushed
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away from the vertex by various setback values to ensure the necessary space for a smooth
transition. It has been emphasized in [Várady and Hoffmann, 1998] that for connecting
n edge blends the most genuine surface model is not an n-sided, but a 2n-sided patch,
although it is possible that the setback vertex blends degenerate, having an arbitrary
number of sides between n and 2n.

Again, parametric solutions are predominantly used, see e.g. [Zhou and Qian, 2010] for a
method using S-patches, however, in [Hartmann, 2001] and [Várady et al., 2001], (symmet-
ric) functional splines and I-patches, respectively, were applied for various kinds of vertex
blends (suitcase, house, box, setback).

In this thesis, we focus on the setback principle and investigate how I-patches can be used
for this modeling task.

2.2.3 Surface approximation

Surface approximation is an extremely important area within CAGD. Early publications
described methods where a given point cloud (or a related triangular mesh) was approx-
imated by a single surface, however, with the emergence of digital shape reconstruction
lots of papers were published that dealt with modeling complex segmented datasets by a
collection of patches [Várady et al., 1997].

Surface approximation is also dominated by fitting parametric surfaces over topologically
irregular data sets, fundamental questions include how to trim these surfaces, how to fair
the shape, how to smoothly connect and constrain the adjacent pieces [Weiss et al., 2002].

Implicit surfaces have been used for the previously mentioned strategy of approximating
the underlying data by a single surface, like Poisson reconstruction [Kazhdan et al., 2006],
however, according to our best knowledge our proposed approach to use piecewise implicit
surfaces is presumably the first of its kind.
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2.3 Modeling patchworks with polyhedral frames

In this section, we present two algorithms. The first is polyhedral design, where a complex
freeform patchwork is defined by means of a control polyhedron, yielding a collection of
smoothly connected I-patches. The second is setback vertex blending, where a multi-sided
I-patch is created to connect primary surfaces and edge blends.

These constructions are based on the following steps: (i) create a boundary curve network
derived from the polyhedron, (ii) create ribbons and bounding surfaces based on the frame,
(iii) set shape parameters, and (iv) recognize and resolve special cases.

The main contribution of this section is giving a comprehensive framework for the use
of implicit patches in these applications. Although the basic methods for creating the
control data for these patchworks were discussed in previous work (see especially [Loop and
DeRose, 1990] for polyhedral design and [Várady and Rockwood, 1997] for setback vertex
blending), we will need to elaborate on the choice of geometric entities and algorithms best
suited for implicit surfacing.

2.3.1 Polyhedral design

The following polyhedron-based representation produces smoothly connected I-patches.
The control polyhedron has a general topology with convex faces of an arbitrary number
of sides and vertices of arbitrary valency. The faces are not necessarily planar, and the
control structure may be open or closed. T-nodes are not permitted.

2.3.1.1 Curve networks

The initial step is to create a freeform curve network. Its topological structure corresponds
to the dual graph of the polyhedron, see Figure 2.1. For each face of the polyhedron, we
compute a centroid Qi. For each straight segment of the polyhedron, there is a corre-
sponding crossing curved edge that connects the centroids of the neighboring faces. For
each vertex of the polyhedron with valency k we compute a k-sided surface patch, bounded
by a loop of k curved edges.

At the centroids we determine local tangent planes; for planar control faces this is obvious,
for non-planar faces we compute a best-fit plane that contains the centroid and approx-
imates the midpoints of the edges in the least-squares sense. Then, ribbons are uniquely
defined (see next section) by two centroids and two local tangent planes. Note that these
ribbons are being shared by the adjacent patches along the common boundary, thus the
construction ensures smooth continuity between the patches.

A simple example is shown in Figure 2.1. The control polyhedron has one 5-sided and six 4-
sided faces. It has internally two 3-valent vertices and one 5-valent vertex, which will yield
two 3-sided patches and one 5-sided patch. The Q2Q3 ribbon, for example, is uniquely
defined for both the left 3-sided and the 5-sided patch, ensuring smooth connection.
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Figure 2.1: Control frame for polyhedral design.

Figure 2.2: Curve network and related surfaces.
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Figure 2.3: Control triangles. Small arrows show the normal vectors ni cor-
responding to the corner points Qi; R is a reference point.

2.3.1.2 Ribbons and bounding surfaces

In this proposed framework for polyhedral design, we deal with a variety of ribbons and
bounding surfaces that are either planes, Liming-surfaces (1.3.1.1) or I-lofts (1.3.2.3). Any
ribbon-bounding surface pair can occur under certain circumstances for a given side of a
patch.

Planes Planar ribbons are only used when the neighboring faces of the control polyhe-
dron are identical. In this case, that plane can be used as the ribbon and will fulfill the
continuity constraints.

Planar bounding surfaces, however, are often used due to their simplicity and the fact that
their use possibly makes the polynomial degree of the resulting patch lower. We introduce a
control triangle for each side that is made of the two face midpoints and the edge midpoint.
The planar bounding surface is defined to be the plane of this triangle. See Figure 2.3.

Liming-surfaces Liming’s method is often a straightforward way of creating ribbons.
Let Pi be the equation of the plane containing Qi and having normal vector ni, then the
equation of the ribbon is

Ri = (1− λi)PiPi+1 − λiC
2
i,i+1 = 0, (2.2)

where λi is a scalar parameter, and Ci,i+1 denotes the equation of the cutting plane. This
must contain the chord QiQi+1, but there is a degree of freedom, called the sweep direction
si,i+1, by means of which this plane is determined. The normal of C̃i,i+1 will be set to the
vector product of the chord and si,i+1.
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Figure 2.4: A ribbon surface on the Q2Q3 boundary.

One special case is when si,i+1 is chosen to be orthogonal to the plane of the control
triangle and simple conical sweeps are generated. If both ni and ni+1 are contained in the
plane of the control triangle, and the conic represents a circular arc, a cylindrical surface
is obtained. In order to obtain a good sweep direction for arbitrary tangent plane normals,
we propose to set it orthogonal to the average of ni and ni+1; this method degenerates to
the above cylindrical surface. An example of a Liming-ribbon, which touches the corners
Q2 and Q3, can be seen in Figure 2.4.

Liming-surfaces can also be used as bounding surfaces. Some of the possible reasons for
this will be discussed later, in 2.3.3.2. In this case, we define Bi as a quadratic Liming-
surface using binormals mi at the two corners. This construction produces curved bounding
surfaces. Figure 2.5 shows a curved bounding surface interpolating corners Q1 and Q2.

In cases when both the ribbon and the bounding surface were created this way, the in-
tersection curve (the boundary curve of the patch) will also be quadratic. This is because
they both contain the rational quadratic parametric curve defined by the three vertices
of the control triangle and rational coefficients which can be directly calculated from λ.
Thus it is easy to evaluate points on the boundary curves, which can be useful for some
applications.

However, there are cases when a Liming-ribbon or bounding surface cannot be created. It
is a necessary condition for the existence of a conic boundary with Liming-ribbons that the
opposite corner points fall into consistently oriented positive half-spaces of the tangential
planes. Formally,

Pi(Qi+1) > 0, andPi+1(Qi) > 0 (2.3)

must hold. This condition was also pointed out by [Bajaj and Ihm, 1992b]. An example
is shown in Figure 2.6; the top curve of an “almost toroid” surface lies in the xy-plane,
while the left normal vector n2 is tilted forward, and the right normal vector n1 is tilted
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Figure 2.5: A curved bounding surface on the Q1Q2 boundary.

Figure 2.6: An I-loft with twisted normal vectors.

backward. Here the above criterion is not satisfied, and no appropriate conic ribbon can be
inserted, since the two normals would point into different half-spaces, yielding a nonsense
shape. This motivates the application of the I-loft surfaces.

I-lofts I-loft ribbons are constructed based on the corner planes P̃i and P̃i+1 and the
local bounding planes L̃i,1 and L̃i,2:

Ri = w1 · Pi · L2
i,2 + w2 · Pi+1 · L2

i,1 + w · L2
i,1 · L2

i,2. (2.4)

A natural choice for the local bounding surfaces is to use two parallel planes perpendicular
to the chord and interpolating the corner points. In Figure 2.6 an I-ribbon is shown that
resolves the difficult case with twisted normals mentioned above.
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We can also use I-lofts as bounding surfaces, especially when the binormal planes M̃i and
M̃i+1 do not fulfill Equation 2.3. In that case the I-loft

Bi = w1 ·Mi · L2
i,2 + w2 ·Mi+1 · L2

i,1 + w · L2
i,1 · L2

i,2 (2.5)

can be used instead of Liming-surfaces. Note however, that I-lofts have a polynomial degree
of 4, and they are on the second power in the equation of a G1 I-patch, thus overusing
them can make its degree very high.

2.3.1.3 Shape parameters

Once the ribbons and bounding surfaces are defined, the next step is to set the wi weights.
The orientation of all ribbons must ensure a consistent positive direction normal fence, as
discussed in 1.3.2.6. All wi must be positive since the orientation of the ribbons must be
retained. Let us pick a reference point S that is typically, but not necessarily, a point to be
interpolated by the I-patch. The individual weights are set by satisfying wiRi(S)/B

2
i (S) =

±1, using the algebraic distances from 1.3.2.5. The sign depends on the location of the
reference point with respect to the ribbon. For example, in Figure 2.3, the reference point
lies under the Q1Q2 ribbon, but above the Q2Q3 ribbon. Thus the surfaces are combined
in a way that they will have the same contribution at the reference point.

Keeping the above initial wi values, there is freedom to choose an arbitrary w weight
in Equation (1.21), which will globally control the fullness of the patch. The geometric
meaning is that this value corresponds to the sum of the distances, so accordingly tighter
or looser patch interiors can be produced. Previously we set the coefficients such that in S

the sum of the absolute values of all weighted algebraic ribbons is one; however, their sign
depends on the sign of the Ri-s. The patch should interpolate S, so w needs to be set to∑

sgn(Pi(R)), which ensures that the patch interpolates S.

Of course, it may make sense to modify the default weights wi. Generally, the initial values
are appropriate for simple models, but for complex, twisted configurations some tuning
may be necessary. It is possible to manually edit the weights, but this requires experience.
Instead, we propose to run a numerical optimization: first, we create an initial triangulated
mesh from the I-patch with the default coefficients, the method for which can be found in
Appendix D, using the defaults, then these values are updated by minimizing the polyhedral
energy functional proposed in [Pellis et al., 2019]. The optimization runs until there is no
significant improvement in the energy, or the maximum number of iterations has been
reached.

2.3.1.4 Examples

Polyhedral design is demonstrated using a simple test object (Figure 2.7). When performing
simple operations, such as dragging the right face and repositioning the top vertices, the
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shape is modified in a natural manner. On the left side, the left face is extruded, creating
a new knob-like shape.

2.3.2 Setback vertex blending

Another interesting area where I have investigated the use of I-patches is vertex blending.
They play an important role in surface and solid modeling. While edge blends (fillets)
replace sharp intersection curves, vertex blends smoothly connect converging edge blends.
Vertex blending is a difficult modeling task, as the edges to be blended may represent
very complex configurations; we may have convex, concave, or smooth edges with uneven
angles and radii, and must handle many special cases, including tangential, cuspate, and
degenerate edge pairs.

2.3.2.1 Curve networks

The basic components of a setback vertex blend are shown in Figure 2.8. Here we describe
vertex blends for polyhedra, but the concept nicely generalizes for more complex ribbons
and bounding surfaces. The ith edge blend, generally a cylinder, is bounded by two rail
curves (colored pink), that run on the “previous” and “next” ribbons. The edge blends
terminate at profile curves (blue); for example, one connects two corner points C1 and C2.
Together with the edge point E12, a planar control triangle is formed, a placeholder for a
profile curve.

On each polyhedron face, there are two corners that need to be connected by a spring
curve (blue); for example, the one that connects C2 and C3. The rail curves that pass
through these points intersect at point I23, defining another triangle for a curve segment.
Altogether, the vertex blend is bounded by an alternating sequence of profile curves and
spring curves. A formula to compute the extent of the setbacks can be found in Appendix C;
for more details see [Várady and Hoffmann, 1998].

2.3.2.2 Ribbons and bounding surfaces

Constructing ribbons and bounding surfaces for setback vertex blending is fairly straightfor-
ward: ribbons are an alternating sequence of cylindrical edge blends and planar polyhedron
faces, while bounding surfaces are an alternating sequence of bounding planes perpendic-
ular to the blended edges and curved bounding surfaces along the spring curves.

In this proposed scheme, the profile curves of the edge blends are circles, while the spring
curves are parabolas. The reason for this is that profile curves can be defined to be sym-
metric, while spring curves may have an uneven shape, which parabolas were observed to
handle better.
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(a) Control net (b) Control net

(c) Shaded surface (d) Shaded surface

(e) Contours (f) Contours

(g) Curvature (h) Curvature

Figure 2.7: Polyhedral design examples.
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Figure 2.8: Construction of a setback vertex blend.

2.3.2.3 Shape parameters

A reference point is defined then by adding a displacement vector to the central vertex
O based on the average deviation between the edge points Eij and the midpoints of the
related circular profiles. Then we set the weights in the same way as in the case of polyhedral
design (2.3.1.3) and apply the I-patch equation.

2.3.2.4 Examples

The test case presented is a combination of connected setback vertex blends, applied on
a polyhedron. In Figure 2.9, three 8-sided and three 6-sided patches smoothly connect to
planar faces (not shown). The patches are displayed with curvature maps and contours.

2.3.3 Special cases

In 2.3.1.2 we have already discussed special cases, where it was impossible to create a
Liming-ribbon, and we had to apply a more complex construction, the I-loft. Here we deal
with two further problems.

2.3.3.1 Handling ribbon problems

The I-patch scheme may produce dubious shapes if the distance fields produced by the
ribbons abruptly change their sign within the space where the I-patch is going to be
created. This may be due to multiple surface branches in the vicinity of the boundaries,
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(a) Curvature map (b) Contours

Figure 2.9: Connected vertex blends.

Figure 2.10: Fixing a shape artifact by tuning the fullness of the ribbons.

or high curvatures when the ribbon “turns under” itself; see the transparent surfaces in
Figures 2.10 and 2.11. Self-intersections within the ribbon may also lead to visible shape
problems.

In these cases, we have different options to repair the ribbons. We can change the fullness
λi of the boundary conics, which strongly affects the shape of the Liming-ribbons, as well.
As the curvature becomes smaller, the artifacts disappear. Such an example can be seen
in Figure 2.10, where the original ribbon of the I-patch was replaced by a “broader” one
that locally prevents interference with the interior of the patch.

Another option is to change the representation of the ribbon, and exclude the highly curved
portion or the undesired branch. We can modify Liming’s method to obtain a piecewise
Liming-ribbon:

Ri =

 (1− λ)PiPi+1 − λC2
i,i+1

PiPi+1

Ci,i+1 ≥ 0,

Ci,i+1 < 0.
(2.6)

An example is shown in Figure 2.11, where a cylinder with a small radius was replaced
by a piecewise ribbon, yielding a good setback vertex blend. The drawback of this method
is that having only G1 continuity along C̃i,i+1 may affect internal continuity within the
patch, although in many cases the curvature maps or the isophote lines do not indicate
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Figure 2.11: Fixing a shape artifact by using piecewise ribbons.

Figure 2.12: Isophote lines on an 8-sided setback vertex blend represented by
an I-patch with piecewise ribbons.

this phenomenon at all, see for example Figure 2.12.

2.3.3.2 Handling bounding problems

It is a necessary assumption that the union of the bounding surfaces forms a well-defined,
connected space for the patch to be created, and accordingly, all bounding surfaces are
supposed to have a constant sign inside the patch. This is violated when a bounding
surface B̃j intersects another boundary curve, where Pi = Bi = 0, and thus a disconnected
I-patch is obtained. We can detect this problem by checking whether the bounding surface
intersects the boundary loop on the distant boundaries. An example is shown in Figure 2.13,
where the top right bounding surface intersects the bottom left boundary. The problem is
fixed, if we use a curved bounding surface.
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Figure 2.13: Removing a shape artifact by using a curved bounding surface.
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Algorithm 1: I-patchwork from control polyhedron.
Input: polyhedron (open or closed)
for all faces of the polyhedron do

create a midpoint and corresponding normal vector
end
for all edges of the polyhedron do

take the midpoints of the two neighboring faces
if normals are compatible (Eq. 2.3) then

create a Liming-ribbon
else

create an I-loft ribbon
end
create planar bounding as the plane of edge midpoint and two face midpoints
if planar bounding intersects other boundaries of the patch then

create curved bounding using binormal vectors
end

end
for all vertices of the polyhedron (corresponding to resulting patches) do

select reference point S
for all sides of patch do

set wi coefficient that balances contribution in S
end
set w coefficient so that patch interpolates S

end
(optionally) run numerical optimization based on smoothness to tune coefficients
Result: G1-connected patchwork of I-patches
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2.3.4 Summary

I have devised two schemes for modeling complex implicit patchworks via control polyhedra.
In polyhedral design each vertex of the polyhedron with valency n will be replaced by an n-
sided I-patch, smoothly connecting to the neighboring patches. In setback vertex blending
each vertex with n converging edge blends will be represented by a 2n-sided I-patch,
connecting to the polyhedron faces. I have elaborated algorithms for these applications
to create general topology curve networks, and various types of ribbon and bounding
surfaces, that match the geometric constraints coming from the polyhedral models and
ensure G1 continuity. I have identified special cases that need to be detected and resolved
for obtaining valid models. I have also proposed a tessellation method to convert I-patches
to good quality triangle meshes.

The outline of the algorithm can be found in Algorithm 1 for polyhedral design and Algo-
rithm 2 for setback vertex blending. The tessellation method is detailed in Appendix D.
These results have been published in [Sipos et al., 2020].

Algorithm 2: I-patches for setback vertex blending.
Input: polyhedron with planar faces
for all edges of the polyhedron do

create edge blends
end
for all vertices of the polyhedron do

for all edges connecting to vertex do
create a planar bounding perpendicular to the edge extract patch corner
points from its intersection with the edge blend

end
for all faces connecting to vertex do

create a spring curve connecting the corner points on the face create
bounding surfaces by extruding it use the planar face as ribbon surface

end
select reference point S
for all sides of patch do

set wi coefficient that balances contribution in S
end
set w coefficient so that patch interpolates S

end
Result: I-patches G1-connected to faces and edge blends
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Figure 2.14: Approximating a selected area on a mesh using an I-patch.

2.4 Approximating meshes with smoothly connected implicit surfaces

In this section, a new algorithm to approximate triangular meshes using I-patches will be
presented. While there is rich literature about doing the same, applying parametric patches,
according to our best knowledge, a smoothly connected patchwork of implicit patches has
not been applied so far.

The input is a mesh, and an additional structure is supplied: a user-defined vertex graph.
These allow us to create a model by connecting relatively low-degree, high-quality single-
patch surfaces composed of geometrically intelligible parts.

For example, a mesh, a vertex graph defined on it, and an approximating patch can be
seen in Figure 2.14.

2.4.1 Ribbons and bounding surfaces

This section will introduce how to construct the ribbons and bounding surfaces for creating
the patchwork of I-patches. As will be explained below, these surfaces are always defined
as weighted combinations of planes given at the corner points and auxiliary planes derived
from the corner data.

Let us take two adjacent corner points P1, P2, and incident corner planes P̃1, P̃2 with
normal vectors n1, n2 (approximated from the mesh with the standard methods given by
[Max, 1999] or [Cazals and Pouget, 2005]). The corresponding ribbon interpolates both
points and normal vectors. Similarly, the bounding surface interpolates both points, but
it is transversal to the ribbon surface. The ribbons and bounding surfaces are defined –
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similarly to the constructions described earlier (2.3.1.2) – by three kinds of equations:
(i) planes, (ii) Liming-surfaces, and (iii) I-lofts.

In the case of Liming-surfaces, the choice of the cutting plane C does affect its shape.
Nevertheless, the simplest setting of its normal vector n12 = (n1 + n2)/2 proved to be
satisfactory. The parameter λ is going to be defined by the optimal approximation of the
underlying polyline boundary, see the next section.

With I-lofts, there is freedom to select the bounding planes. We propose to constrain
them to be parallel as it improves their stability, because in the direction in which the
bounding surfaces are getting closer, fluctuation may be observed on I-lofts. It also seemed
advantageous to set them perpendicular to the boundary, thus their normal was set to
point in the direction of ±(P1 −P2). The weights w1 and w2 are shape parameters to set
the fullness of I-lofts, and thus ensure the best approximation of the underlying polyline
boundary, see the next section.

In this context, we propose using planar bounding surfaces to subdivide the interior of
the mesh, since these lead to planar boundary curves and the equation of the I-patch
becomes simpler. Intersections with Liming-ribbons yield conic curves, while we get planar
I-segments with I-lofts. One simple formula to set the normal of this bounding plane comes
from forcing it to include the average of the corner normals

nB = n12 × (P2 −P1). (2.7)

Curved bounding surfaces may be used in the interior of the mesh to approximate non-
planar subdividing curves, but they must be used for the approximation of curved external
boundaries. In this case, the local direction of the mesh boundary at the corner points is
calculated; the tangent planes of the bounding surface are defined by this vector, and the
corresponding mesh normal. When a curved bounding surface is intersected with a curved
ribbon, a general 3D curve is obtained.

It should be noted that the use of Liming-surfaces is not always possible. If the boundary
to be approximated has a point of inflection, or the corner normals are twisted, only I-lofts
can be used as already explained in 2.3.1.2.

It is also important to observe that the ribbons and the bounding surfaces depend only on
the corner points, the corner normals, and the mesh, so if two adjacent I-patches share the
same P1P2 boundary, the identical surface components will guarantee a smooth connection.

2.4.2 Approximation with I-patches

The purpose of this section is to describe how to construct I-patches that approximate
a given mesh. At this point, we assume that the bounding surfaces have already been
determined. We intersect these with the mesh and trace polylines on the mesh between
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the adjacent corner points. We do not need tracing along the external edges of the mesh,
since there the polylines are directly available. First, we create ribbons that approximate
these polylines, then an I-patch that approximates the interior points of the mesh.

Ribbons must match the given corner points and the corresponding normals. Liming-
ribbons are constructed by optimizing their free λ parameter. This sets the shape of the
ribbon and determines the best approximating conic boundary curve. I-lofts are somewhat
more flexible, and we have two independent scalar weights for the optimization. The error
function to be minimized is the squared sum of the faithful algebraic distances (see 1.4).
Euclidean distances could also be used, but there was no substantial difference in the
resulting patches, while it would be computationally more costly. As mentioned earlier, it
may be possible that a boundary can be approximated by both a Liming-surface and an
I-loft. In this case, we choose the one with the smaller error.

Figure 2.15 shows a Liming and an I-loft ribbon, with corner planes and sampled points
on the mesh. The deviation map indicates that the ribbons are close to the mesh (green)
in the vicinity of the related boundary.

Figure 2.15: A Liming (left) and an I-loft ribbon (right), showing deviation
from the mesh.

As the next step, mesh points are filtered so only those remain that are enclosed by the
bounding surfaces. Then, the mass center of the polyline boundaries of the patch is com-
puted and projected onto the mesh. This initial center point C is used to determine the
initial weights wi for the ribbons by enforcing that all terms wiRi(C)

B2
i (C)

, i = 1, . . . , n are equal.
In other words, the initial patch is composed in a way that the individual ribbons con-
tribute to the patch in an even manner at the center point; the patch is also constrained
to interpolate point C.

Then, the mesh points are filtered so only those remain that are enclosed by the bounding
surfaces. The initial setting of the weights can iteratively be improved to obtain the best
approximation of the underlying data. The squared sum of the faithful distances (1.4)
is minimized, and the optimal weights are set accordingly. For both the optimization of
the ribbon and the patch, derivative-free methods can be applied; in the examples, the
Nelder–Mead algorithm was used [Kochenderfer and Wheeler, 2019].

It was observed that it is a good idea to limit the ratios of the optimized weights. Otherwise,
one ribbon may dominate the patch equation, and corrupt the surface quality along the
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other borders. Accordingly, the maximum relative change of how much the weights of the
optimized ribbons can deviate from their initial values was constrained. This maximum
ratio is a user parameter σ. (In our examples, σ was set to 5.)

The formalized optimization problem is:

argmin
w

N∑
i=1

Î2w(Qi), s.t. max
i,j

(
wiRi(C)

B2
i (C)

/
wjRj(C)

B2
j (C)

)
≤ σ, (2.8)

where w = {wi}n1 is the vector of weights, and Qi (i = 1, . . . , N) denotes the data points
to be approximated. Figure 2.16a shows the curvature map of the optimized I-patch. In
Figure 2.16b, colors are assigned to the individual sides and show the strength of the
normalized blending functions.

(a) Mean curvature map. (b) Contributions of each side.

Figure 2.16: Optimization of a 5-sided patch.

2.4.3 Adaptive refinement of patchworks

The next problem to be solved is to refine the initial patchwork if it does not approximate
the data points within a prescribed tolerance. Below we are going to introduce a method
of adaptive refinement that follows simple heuristic rules. If a boundary is out of tolerance,
it will be subdivided halfway between its endpoints. If a patch is out of tolerance, central
splitting will be applied and a new mesh point will be inserted in its interior. The new
subdivision points are connected with new boundary curves to the existing ones and new
artificial points in order to create a consistent structure. This leads to a new graph of edges
with new ribbons and bounding surfaces, given in the same form as before, i.e., segments
defined by two endpoints with normals, and an underlying polyline to be approximated. The
above procedure automatically iterates until the requested accuracy is achieved. Naturally,
the initial network greatly affects the structure of the final patchwork.

It is crucial, of course, to prevent the propagation of local refinements over the full patch-
work, and subdivide only where it is necessary. Fortunately, I-patches are well-suited for
producing T-nodes, as will be explained below.

Figure 2.17a shows a boundary connecting P1 and P2 that needs to be subdivided; a new
mesh point Pm is inserted, and (at least) four new boundaries are created. This is an X-
node, where we compute a new position, and a new normal vector is taken from the mesh.
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(a) X-node. (b) T-node.

Figure 2.17: Cases of adaptive refinement.

Figure 2.17b shows another configuration, where a 6-sided patch needs to be centrally split
at Pc, which is the formerly described center point of the original patch. Here we wish to
preserve the left ribbon connecting P1 and P2, and let the two adjacent subpatches of the
subdivided patch inherit its midpoint Qm and the corresponding normal vector. In other
words, the original ribbon and bounding surface are transferred, and both new surfaces
along the P1P2 boundary will use exactly the same ribbon surface. Thus, G1 continuity is
naturally maintained. A related example will be shown in the next section.

2.4.4 Examples

Our first example in Figure 2.18 illustrates that I-patches naturally extend beyond the
subspace determined by the bounding surfaces. Here we rendered the curvature map of the
patch from Figure 1.19a using marching cubes.

Figure 2.18: Natural extension of an I-patch.

The second example in Figure 2.19 shows the deviation map of a shoe last model. The
network was created by a uniform cell structure yielding two 3-sided, six 4-sided, and
two 5-sided I-patches. The accuracy of the approximation – here and at the forthcoming
pictures – will be measured in percentages relative to the diagonal of the bounding box.
The average (Euclidean) deviation from the mesh is 0.069%, while the maximum is 0.35%.

The third example (Fig. 2.20) is a sheet metal part composed of six 4-sided and two 5-sided
patches, illustrating the effect of optimization and refinement. Figures 2.20a and 2.20b show
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Figure 2.19: Cell-based subdivision on a model of a shoe last. The color legend
shows absolute deviation values; the bounding box diagonal is 410
units long.

two deviation maps: the initial patch, and the optimized one. Accuracies improve, as shown
in Table 2.1.

(a) Original surface w/o optimization. (b) Original surface with optimization.

(c) Subdivided surface w/o optimization. (d) Subdivided surface with optimization.

Figure 2.20: Subdivision of a sheet metal part, with T-nodes and a split. The
color legend shows absolute deviation values; the bounding box
diagonal is 270 units long.

Figures 2.20c and 2.20d show the deviation map of a refined structure – patch #4 and
patch #7 have been subdivided. As both of these patches are inaccurate, their boundary is
also subdivided, and a new X-node is inserted. Boundaries 2–4, 3–4, and 4–5 are sufficiently
accurate, so we retain and inherit the ribbons from patches #2, #3, and #5, and create
T-nodes accordingly, when patch #4 is subdivided by a central split. For simplicity’s sake,
planar bounding surfaces were generated throughout this refinement. The refined structure
is more accurate, and it can be further improved by optimization (see Table 2.1).
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Finally, Figure 2.21 shows the front part of a concept car. The first image depicts the initial
ribbons of a sparse network that have been refined in two steps. The deviations decrease
as the number of I-patches increases, see Table 2.2.

Model Average deviation Maximum deviation
Original w/o optimization (Fig. 2.20a) 0.055% 0.399%
Original with optimization (Fig. 2.20b) 0.035% 0.226%
Split w/o optimization (Fig. 2.20c) 0.041% 0.283%
Split with optimization (Fig. 2.20d) 0.029% 0.175%

Table 2.1: Quantitative results corresponding to Figure 2.20.

(a) Initial ribbons. (b) Initial patchwork.

(c) First refinement step. (d) Second refinement step.

Figure 2.21: Steps of adaptive refinement on a concept car model. The color
legend shows absolute deviation values; the bounding box diago-
nal is 4400 units long.

Model # of patches Average deviation Maximum deviation
Original (Fig. 2.21b) 10 0.140% 3.000%
After 1 step (Fig. 2.21c) 15 0.027% 0.300%
After 2 steps (Fig. 2.21d) 28 0.016% 0.120%

Table 2.2: Quantitative results corresponding to Figure 2.21.

2.4.5 Summary

I have elaborated a method to approximate discrete meshes with patchworks of implicit
surfaces. Boundary curves of patches are assigned automatically or manually, the scheme
supports a general topology curvenet, with multi-sided patches and permitting T-nodes.
For approximating the input points, the least squares method based on the faithful distance
metric is used. A refinement method is given, in which the network can be locally refined,
only having to subdivide particular patches; the scheme is shown to prevent the loss of
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smooth connections anywhere.

The outline of the algorithm can be found in Algorithm 3. These results have been published
in [Sipos et al., 2022a].

Algorithm 3: I-patchwork approximating mesh.
Input: mesh; low resolution vertex graph
for all vertices of the graph do

extract normal vector from mesh
end
for all edges of the graph do

create a bounding surface using the average of the corner normals
intersect the bounding surface with the mesh, and extract a polyline
if corner normals are compatible (Eq. 2.3) then

create a Liming-ribbon, approximating the polyline
else

create an I-loft ribbon, approximating the polyline
end
if error is above tolerance then

mark boundary for subdivision
end

end
for all regions of the graph do

compute center point
compute initial weights based on equal contribution
run constrained optimization on weights
if error is above tolerance or there are boundaries marked for subdivision then

for boundaries marked for subdivision do
insert a midpoint and extract normal from the mesh
create two new ribbon surfaces

end
for other boundaries do

insert a T-node, retaining the ribbon surface
end
subdivide the patch with central split

end
end
Result: I-patches G1-connected and approximating the input mesh
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Conclusion

In this dissertation, I have presented new results related to implicit surfacing in Computer
Aided Geometric Design. My primary interest was to explore finite, multi-sided implicit
patches that are capable of defining not only regular but freeform shapes, as well. My
results extend our knowledge about I-patches and demonstrate interesting applications
with several case studies.

In the first part of the thesis, I have proposed new implicit schemes, including I-lofts
and corner I-patches which can be used in 3D geometric modeling and built upon in
further research. I have also described new evaluation methods for I-patches including
the rational form that brought up a new distance-based interpretation, and the faithful
distance function that proved to provide much better distance estimation than the former
solutions.

In the second part, I have presented three practical algorithms using I-patches. Polyhedral
design and setback vertex blending can be used in Computer-Aided Design in cases, when
smooth surfaces in implicit representation defined by control polyhedra are required. My
mesh approximation technique is useful when a discrete mesh needs to be represented by
a collection of smoothly connected implicit patches.

The main results of this dissertation have already been published in the journal papers
[Sipos et al., 2020], [Sipos et al., 2022a], and [Sipos, 2023]. These have also been presented
at international ([Sipos et al., 2020], [Sipos et al., 2021]) and domestic ([Sipos, 2022a; Sipos
et al., 2022b; Sipos and Salvi, 2021; Sipos, 2022b]) conferences. My work contributed to
a research project that has been supported by the Hungarian Scientific Research Fund:
OTKA, No. 124727, Modeling general topology free-form surfaces in 3D.
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Appendix A

Proof of Liming’s method properties

Lemma 1. Let Q̃ be a quadratic implicit curve, L̃1, L̃2 two distinct tangent lines of it, C̃
the secant through the points of tangency. Then, ∃λ ∈ (0; 1), ω ∈ R s.t.

(1− λ) · L1 · L2 − λ · C2 ≡ ω ·Q. (A.1)

Proof. Let (x, y) be a point s.t. Q(x, y) = 0, L1(x, y) ̸= 0, L2(x, y) ̸= 0. Let

λ :=
L1(x, y) · L2(x, y)

L1(x, y) · L2(x, y) + C2(x, y)
(A.2)

meaning that this point is on our curve as well.

A general quadratic implicit curve is of the form

ax2 + bxy + cy2 + dx+ ey + f, (A.3)

having 6 coefficients, although multiplying them with the same scalar does not change the
curve.

Fitting a curve on the two tangential conditions, and the additional requirement of interpo-
lating (x, y) means a homogeneous linear system of 5 equations, as according to [Bajaj and
Ihm, 1992a] a tangential constraint in 2D can be described with the following equations
((x, y) is the point to interpolate, (dx, dy) is the prescribed gradient).

F (x, y) = 0 (A.4)

dx · ∂yF (x, y)− dy · ∂xF (x, y) = 0 (A.5)

Now, apply this to the unknown quadratic curve F (x, y) = a · x2 + b · xy + c · y2 + d · x+

e · y+ f , which should interpolate point (x1, y1) with gradient (m1, n1), point (x2, y2) with
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gradient (m2, n2) and point (x3, y3) (with no specified gradient). (Points (x1, y1), (x2, y2),
and (x3, y3) are all distinct.)

The partial derivatives are

∂xF (x, y) = 2a · x+ b · y + d (A.6)

∂yF (x, y) = 2c · y + b · x+ e (A.7)

Thus, the equation system will be

ax21 + bx1y1 + cy21 + dx1 + ey1 + f = 0 (A.8)

ax22 + bx2y2 + cy22 + dx2 + ey2 + f = 0 (A.9)

ax23 + bx3y3 + cy23 + dx3 + ey3 + f = 0 (A.10)

m1 · (2cy1 + bx1 + e)− n1 · (2ax1 + by1 + d) = 0 (A.11)

m2 · (2cy2 + bx2 + e)− n1 · (2ax2 + by2 + d) = 0 (A.12)

These are 5 independent equations for (a, b, c, d, e, f), so the solution space is 6 − 5 = 1

dimensional.

This means that any two solutions are each other multiplied by a scalar.

Theorem 1. Let L̃i (i = 1, 2, 3, 4) be four distinct tangent lines, Pi (i = 1, 2, 3, 4) the
points of tangency. Let C̃1 be a line through P1 and P2, C̃2 through P3 and P4. Then, the
family of two-sided I-patches

Iw := w1 · L1 · L2 · C2
2 + w2 · L3 · L4 · C2

1 + w · C2
1 · C2

2 (A.13)

fulfills the tangential conditions. Moreover, if there exists a quadratic curve satisfying the
constrained tangents, the I-patch Ĩ reproduces it with well-chosen coefficients.

Proof. The first statement trivially follows from the I-patch properties: for example in P1,
using that L1(P1) = 0 and C1(P1) = 0;

Iw(P1) = 0 + 0 + 0 = 0 (A.14)

and

∇Iw(P1) = c1(P1) · ∇L1(P1) + v1(P1) · L1(P1)+

+ c2(P1) · 2 · C1(P1) · ∇C1(P1) + v2(P1) · C2
1 (P1), (A.15)

where c1, c2 are real-valued, v1,v2 are vector-valued functions. Using the constraints, we
get

∇Iw(P1) = c1(P1) · ∇L1(P1) + 0 + 0 + 0, (A.16)
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meaning that the point is on the curve, and the direction of the gradient is the same as
that of the gradient of the line, so L̃1 is indeed a tangential line. □

For the second statement, let Q be the equation of the target quadratic curve,

R1 := L1L2 (A.17)

R2 := L3L4 (A.18)

Si,ω,λ := ω((1− λ)Ri + λC2
i ) (A.19)

Due to Lemma 1, ∃ω1, λ1 : S1,ω1,λ1 ≡ Q, similarly ∃ω2, λ2 : S2,ω2,λ2 ≡ Q

Now, on the one hand

S1,ω1,λ1C
2
2 + S2,ω2,λ2C

2
1 = ω1(1− λ1)R1C

2
2 + ω1λ1C

2
1C

2
2+

+ ω2(1− λ2)R2C
2
1 + ω2λ2C

2
1C

2
2 (A.20)

On the other hand
S1,ω1,λ1C

2
2 + S2,ω2,λ2C

2
1 = Q · (C2

1 + C2
2 ) (A.21)

This means that with

w1 = ω1(1− λ1) (A.22)

w2 = ω2(1− λ2) (A.23)

w0 = ω1λ1 + ω2λ2; (A.24)

I[w1,w2,w0] ≡ Q · (C2
1 + C2

2 ), (A.25)

where (C2
1 + C2

2 ) is only zero in the intersection point of the lines, thus Ĩ and Q̃ have to
be the same curve.
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Appendix B

Auxiliary point calculation

Side coefficients in the examples are calculated such that the boundary curve interpolates
a given point. That point is computed with either the triangle rule or the tetragon rule.

There are two cases: the two corner planes and the bounding face either have an intersection
point inside the face, or it does not. If that point exists, we have a triangle (Figure B.1a)
and we take its centroid as the point to interpolate. Otherwise, we have a tetragon (Figure
B.1b), by intersecting each corner plane with the opposite corner’s cube edge. We then
take the centroid of this polygon.

(a) Triangle rule. (b) Tetragon rule.

Figure B.1: Rules for computing interpolated points. Blue points and lines
represent corner points and planes. The red point is the centroid
to be interpolated.

The side coefficient can then easily be calculated by evaluating Equation 1.45 for each wi,
as the other side coefficients do not affect the current boundary.
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Appendix C

Computing setbacks

It is crucial to set appropriate setbacks, as they define the distances of the profile planes
from the vertex. This is explained using Figure C.1. Roughly speaking, the formula be-
low takes into consideration the previous and the next rail curve constraints, denoted by
rangeprev and rangenext, and adds a setback offset to ensure sufficient turning space for the
spring curves:

setback = max(rangeprev, rangenext, 0) + offset. (C.1)

Take, for example, the setback that belongs to the profile curve running from C1 to C2. Here
rangeprev = |AO|, rangenext = |BO|, and setback12 = |E12O|. Note that the maximum
function must always yield a positive value, as we need to avoid negative ranges that occur
at concave edge blends.

Figure C.1: Construction of a setback vertex blend.
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Appendix D

Tessellating I-patches

I-Patches with known corner points can be triangulated the following way.

First, a base mesh is created, using an auxiliary parametric surface, which interpolates the
corner points and the boundaries. The simplest method is to use a generalized barycentric
[Floater, 2015] combination of the corner points over a regular n-sided domain:

p(u, v) =
n∑

i=1

λiPi, (D.1)

where
∑n

i=1 λi = 1, and [u, v] =
∑n

i=1 λi · [ui, vi]. Here, [ui, vi] are the domain coordinates
of the corners of the regular n-gon; Pi are the corner points of the surface.

Alternatively, as the implicit surface can be highly curved, a simple transfinite parametric
surface can be used, like the multi-sided C0 Coons patch [Salvi, 2020] which is defined by
its boundary curves. In the case of using Liming-surfaces and/or planes as ribbons and
bounding surfaces, this is easy to solve since in those cases the boundary curve always
has a quadratic rational parametric representation. However, if they do not have a simple
parametric representation, for example in the case of I-segments, they can be given as dense
polylines evaluated via tessellating each implicit boundary curve. As the mesh vertices will
be projected onto the surface, the slight error arising from the inexact curves will not
meaningfully affect the final result.

These surfaces can then be elegantly tessellated by dividing the n-sided polygonal domain
into triangles like in Figure D.1.

When projecting the points of the mesh onto the isosurface, we must ensure continuous
connection to neighboring patches. For that, we need the points on the edge of the patch
to remain on the face of the cell after projection. We also want triangles to change their
size relative to each other as few as possible.

We achieve this by defining a projection direction (a 3-dimensional vector) attribute for
each vertex which will prescribe the line, along which the point will be projected. The
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Figure D.1: Triangulation of a pentagon.

projection direction is prescribed in the corners of the patch and is then interpolated
along the mesh using barycentric coordinates. In the corners, they need to point in the
same direction from the isosurface (e.g. into the positive half-space). See the 2-dimensional
example in Figure D.2.

If the boundary points have to be moved (i.e. we are not using a base patch with exact
boundary points), then at corner points the direction shall be set as the direction of the
edge of the cell there. This ensures that in edge points the direction is inside the bounding
plane, as it is the weighted sum of two edges in that plane (all other barycentric coordinates
are zeros there). Thus, the projected points will also remain there.

See Figure D.3 for a visualization of these direction vectors.

Now we can use ray marching to find the isosurface point for each vertex. By checking the
sign of the implicit function in the starting point, we know in which direction the isosurface
lays, relative to the interpolated direction. In the end, we replace the mesh positions with
the projected positions, getting a mesh representing the piece of the original isosurface
inside the cell. Corner points are not moved, and if the boundary curves were already
approximated, boundary points stay in place as well.

The above process unfortunately does not guarantee that correct results are obtained. If
the isosurface has high curvature variation or large shape artifacts, the resulting mesh
might contain abrupt jumps or overlapping triangles. We prevent this by checking if the
angle between the ray and the gradient of the surface remains under a prescribed threshold.
If not, the resulting mesh is rejected, and we can try to solve the problem by subdividing
the cell. This typically indicates, however, that the quality of the implicit surface would
not be acceptable.

The process however generally produces better-quality meshes for surface analysis than
volume-based methods like Marching Cubes, see Figures D.4 and D.5 for comparison.
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Figure D.2: 2D example of projection direction interpolation.
Purple: implicit surface, red: prescribed directions, blue: interpo-
lated directions. Signs denote the sign of the implicit function in
that region.

Figure D.3: Projection directions visualized on the surface of a C0 Coons
patch.
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Figure D.4: Wireframe visualization of a Marching Cubes mesh (left) and a
projected mesh (right).

Figure D.5: Comparing a Marching Cubes mesh to our approach (6-sided
patch). Top row: mean curvature, bottom row: isophote lines; both
approximated from the meshes.
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