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Abstract
Implicit curves have favorable properties for fitting, as they represent isolines of real-valued distance fields which
can be interpreted as error functions. This makes it very convenient to use them in e.g. least-squares approximation.
However, for most applications, efficient evaluation of curve points (using parameters or explicit formulas) is
also required. In this paper we will give a curve class with both representations based on I-Patches, a class of
interpolating implicit surfaces with interior control.

1. Introduction

I-Patches1 are implicit surfaces that guarantee G1 continuity
to primary surfaces which are given in implicit form. They
have coefficients which control the interior, so theoretically
these could be used to fit a surface to given input data, how-
ever, a general problem with implicit surfaces is that they are
not guaranteed to be a connected, continuous shape for every
coefficient setting.

In this paper, our goal is to present a spline curve class
based on this 3D implicit surface patch which has the advan-
tage of having both an implicit f (x,y) = 0 and an explicit
y = g(x) representation where both can be evaluated effi-
ciently: f is a polynomial with relatively low degree, while
g is a rational function with the same degree as f in the nu-
merator.

In section 2 we will review I-Patches, in section 3 we
will present an algorithm to parameterize some cases of im-
plicit curves. In section 4 we will formulate the interpolating
splines. In section 5 and 6 fitting methods and their discus-
sion will be presented.

2. Previous work

I-Patches were originally published by Várady et al.1 in 2001
to be used in 3D surface modelling.

An I-Patch is an implicit patch defined by n implicit pri-
mary (P1(p) = 0, ...,Pn(p) = 0) and n implicit boundary
(B1(p) = 0, ...,Bn(p) = 0) surfaces. (p ∈R3, arguments will
be omitted when the meaning is unambiguous.) The patch

Figure 1: An I-Patch in 3 dimensions. Brown: primary sur-
faces, transparent blue: boundary surfaces, green: I-Patch

equation is
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where wi and wc are scalar constants.

The main properties of the surface deriving from this
equation are:

• On each Bi (i = 1..n), the I-Patch connects with Pi in first
order (G1) continuity.

• wc only affects the inside of the patch, as B2
j vanishes on

the edges.

A three-dimensional I-Patch can be seen in Figure 1 with
its primaries and boundaries.
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Figure 2: Explicit I-segment configuration

Implicit patches can be considered in any number of di-
mensions easily, in 2 dimensions, the equation will define an
implicit curve, referred to as an I-segment. As curves have
two ends, it should have two primaries and two boundaries,
giving an equation

I = w1P1B2
2 +w2P2B2

1 +wcB2
1B2

2. (2)

A spline constructed from I-segments connected to each
other will be called an I-spline.

We can easily force higher order continuity: for Gn, the
equation has to be

I = w1P1Bn+1
2 +w2P2Bn+1

1 +wcBn+1
1 Bn+1

2 . (3)

3. Parametrization of explicit I-segments

Let us consider the configuration in Figure 2, where B1 and
B2 are parallel straight lines. In this case we can define a
coordinate system, in which the x axis is perpendicular to
the boundaries, while y is parallel to them. Suppose, that P1
and P2 can be written as explicit functions of x (call it fn(x)).

In this coordinate system, the implicit forms of the pri-
maries and boundaries are Pn(x,y) = y− fn(x), Bn(x,y) =
Bn(x) = x− xn (n = 1,2). Then we can write up the implicit
equation and solve it for y:
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, (4)

with the notation n = 3−n.

This means that the I-segment can be written as an explicit
rational function of x. In the Gn continuous case, it is degree
2(n+1) over (n+1).

4. Interpolating splines

Consider the interpolation problem where we have N base
points (x1, ...,xN ) and in each point we have k values
y(0)i , ...,y(k−1)

i , the function value and k−1 specified deriva-
tives in the ith point. We need a k order continuous interpo-
lating spline.

Our approach is the following:

1. For each pair of data xi, xi+1, define B1 = (x− xi), B2 =
(x− xi+1), fi, fi+1 such degree k− 1 polynomials that
they interpolate all specified derivatives in xi and xi+1:
f ( j)
i (xi) = y( j)

i , ( j = 0, ...,k−1) and let Pi = y− fi(x)
2. Set the I-segment coefficients w1, w2, wc, according to

some criteria (see section 5 for examples)
3. We can calculate the implicit form of the curve segment

according to (3), and the explicit form using (4).

This will result in a degree 2k over k rational function.
A well-known alternative solution is to use Hermite-splines2

which will yield a degree 2k−1 polynomial. That is simpler
to evaluate, but does not have an algebraic distance field, off-
set curves can only be calculated via value transformation,
i.e. f (x)+ c,c ∈ R.

In Figure 3 the difference between algebraic offsets and
value-transformed curves can be seen. Our approach gives a
better approximation of the distance between a point and the
curve (although it is not an exact euclidean metric).

5. Fitting

In this part, two methods for setting the coefficients will be
presented.

5.1. C1 continuity spline

Instead of G1 continuity, stronger C1 continuity can be pre-
scribed easily.

As the same Pi implicit curve is used in the interval ad-
jacent to a given point from the right as in the one from the
left, if both I-segments are C1 continuous to this primary,
they will be C1 to each other, too.

Computationally:
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where w(i)
j is the jth coefficient of the curve segment in the

interval between xi and xi+1.
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Figure 3: I-spline segment (purple) and its I(x,y) = ±c al-
gebraic offset curves (grey) in contrast with the y = f (x)±c
transformed curves (green). Curve is from approximating a
tanh function on [−1;1]

Thus, if we set coefficients so that w(i)
1 B2
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2 B2

i−1

(
xi,y

(0)
i

)
, C1 continuity will be achieved. Sub-

stituting the boundary equations yields:

w(i)
1 (xi− xi+1)

2 = w(i−1)
2 (xi+1− xi)

2, (7)

w(i)
1 = w(i−1)

2 . (8)

This means we lose one degree of freedom in each of the
intervals. The conditions do not constrain wc, so it can still
be used for approximation.

5.2. Least squares fitting

As implicit curves are essentially algebraic error functions,
it is easy to write up the least squares problem for given data
points pi = (xi,yi), i = 1..n, which are in the inside of the
interval being considered. This is of course different from

Figure 4: Fitting splines on synthetic (uniformly sampled)
data from a sine function. Top row: cubic Hermite-spline and
its error, middle row: C1 I-spline with midpoint constraint,
bottom row: I-spline with two-parameter fitting. Errors are
on the same scale.

the “conventional” least squares result where in each data
point the f (xi)− yi error is taken into account, our method
will consider the algebraic distance of 2D points from the
curve.

For each interval, we are using a 3-element polynomial
basis and we need the 3 coefficients. However, as the coeffi-
cients can be scaled (i.e. if we multiply them with the same
scalar we get the same curve), one of them can be fixed to
one. When fixing wc = 1 we need to solve the 2x2 matrix
equation: ∑

i
F2

i ∑
i

FiGi

∑
i

FiGi ∑
i

G2
i

 ·[ w1
w2

]
=−

 ∑
i

FiHi

∑
i

GiHi

 , (9)

where

• Fi = P1(pi)B
k
2(pi)

• Gi = P2(pi)B
k
1(pi)

• Hi = Bk
1(pi)B

k
2(pi)

If we used the previous method for C1 continuity or some-
thing else that constrains a degree of freedom, a least-squares
equation can be written for the wc coefficient:

wc =−
∑

i
(w1P1(pi)B

k
2(pi)+w2P2(pi)B

k
1(pi))

∑
i
(Bk

1(pi)B
k
2(pi))

. (10)

If we have one point inside each interval, this equation
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Figure 5: Left: nonsingular curve, right: singularity in
interval

guarantees that it will be exactly interpolated by the curve.
An example for this interpolation is plotted in Figure 4, mid-
dle row.

However, direct least squares fitting can often result in a
singular curve (with a vertical asymptote, see Figure 4, bot-
tom row). In the next section we give sufficient conditions to
prevent this.

6. Discussion

6.1. Singularity

With implicit fitting, the results are often unacceptable, al-
though they fulfill all the continuity requirements because
the curve is not guaranteed to be connected.

In our case, the problem arises when the curve has a singu-
larity. The parametric equation can always be evaluated, un-
less the denominator is zero: w1(x−x2)

k +w2(x−x1)
k = 0.

If k is even (e.g. in the G1 continuous case), and w1w2 >
0 this is guaranteed not to happen as the denominator has
a constant sign. Otherwise, if w1w2 < 0 the curve has an

infinite discontinuity in x =
k
√
|w1| · x2− k

√
|w2| · x1

k
√
|w1|− k

√
|w2|

. As in

the 2|k case k
√
|wi| > 0, this point always falls inside the

interval.

The difference between the singular and nonsingular case
can be seen in Figure 5.

If k is odd, it is the other way around: as (x− x2)
k and

(x−x1)
k have different signs, w1w2 > 0 implies a singularity

inside the interval, and w1w2 < 0 prevents it. G2 I-splines set
by this rule can be seen in Figure 6.

It is interesting to note that while in the G1 case, the
two-parameter least-squares fitting often results in a singular
curve, here, the result is always good. It could be interesting
future research to find the mathematical reasons for this.

6.2. Higher-order continuity

It has to be noted, that in spite of the nice properties listed,
higher-order continuity I-splines (Gn,n ≥ 3) do not seem to

Figure 6: G2 I-splines and their errors. Top row: C1 spline
with midpoint interpolation, middle row: flipped coefficients
according to Section 6’s odd exponent part, bottom row:
two-parameter least-squares fitting. Note that error scale is
one-tenth of G1 version’s

Figure 7: A too rigid G3 I-spline. Note that it is everywhere
continuous, but unlikely to be very useful.

be practical because of their rigidity. An example is shown
in Figure 7. This rigidness is caused by using a high degree
polynomial to represent the curve, but with just a few de-
grees of freedom.

Conclusion

We have presented a class of spline curves with a dual
(explicit-implicit) representation. They are advantageous be-
cause for different interrogations the better suited evaluation
can be used. However, we have also pointed out, that guar-
anteeing that an implicit curve is nonsingular is not always
easy, but in this simplified case it can be done with the help
of parametrization.
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1. Tamás Várady, Pál Benkő, Géza Kós, and Alyn Rock-
wood. Implicit surfaces revisited—I-patches. In Geo-
metric Modelling, pages 323–335. Springer, 2001.

2. Thomas W Sederberg. Computer Aided Geometric De-
sign. chapter 12.3.2. 2012.


