
Volume xx (200y), Number z, pp. 1–6

Perfecting 3D computer models
reconstructed from measured data

I. Kovács, and T. Várady

Budapest University of Technology and Economics

Abstract
The goal of digital shape reconstruction is to create computer representations from measured data. Most of the
3D reconstruction methods give us a good approximation of an ideal model. However, inaccuracies occur due to
noisy data and the numerical nature of the algorithms used for fitting the bounding surfaces. In this paper we try
to eliminate these inaccuracies and create a "perfect" model for CAD/CAM systems. Our algorithms are based on
a method published earlier2. This project expands the existing technology in two areas: it automatically sets up
hypotheses and selects the most likely constraints instead of requesting this information from the user; it also tries
to define global constraints related to the whole object. We determine the optimal axis orientation and an optimal
grid division size for the coordinate system in which the object might have been defined; or determine the best -
full or partial - axis of symmetries. We have been dealing with planar contours with constraints, however, it will
be easy to extend this mathematical apparatus to 3D, as well. The related theoretical and numerical problems are
illustrated by several test examples.

1. Introduction

Digital shape reconstruction (reverse engineering) is an ex-
panding, challenging area of Computer Aided Geometric
Design16. This technology is utilized in various applications
where a given physical object is scanned in 3D, and a com-
puter representation is produced in order to perform vari-
ous complex computations. A wide range of applications
emerges in engineering, medical sciences, and to preserve
the cultural heritage of mankind11. Examples include re-
designing and re-manufacturing old mechanical parts, creat-
ing surface geometries from clay models, or producing sur-
faces matching human body parts for hearing aids, dentures,
prosthetics, etc.

1.1. Digital shape reconstruction

Digital shape reconstruction consists of the following tech-
nical phases: (1) 3D data acquisition (scanning), (2) filter-
ing and merging point clouds, (3) creating triangular meshes,
(4) simplifying and repairing meshes, (5) segmentation (par-
titioning into regions), (6) region classification, (7) fitting
surfaces, (8) fitting connecting surfaces (e.g. fillets), (9) per-
fecting surfaces (including constrained fitting and surface

fairing), (10) exporting to CAD–CAM systems for down-
stream applications.

After the classification we want to determine the best suit
surface. Usually we need to fit many surfaces simultane-
ously. If we fit the surfaces separately, there will be inaccura-
cies. Let be denote the surfaces by {si}, and the correspond-
ing point clouds are {pi j}. Our goal is minimize the average
square distance between surfaces and the point clouds. The
x consists the parameters of the surfaces. So the problem is

fi(x) = ∑
j

d(pi j,si)
2, fi(x)→min .

The fitting problem of simple surfaces are attributable to
eigenvector problems5, and for more complex surfaces also
known effective numerical method14.

1.2. Constrained fitting

The geometric constraints describes the connections be-
tween the objects. The geometric constraints one of the key
issues of engineering design, because these describes the
orthogonality, parallellability, tangential connections, sym-
metries, round values etc. We represent the constraints with
equations.

(12/2013).

2 I. Kovács, T. Várady / Perfecting 3D computer models reconstructed from measured data

Figure 1: An engineering object has many constraints.

There are simple locally acting constraints (between sur-
faces, for example lines, circles, planes, cylinders, cones, ex-
truded and rotational surfaces), and more complex globally
acting constraints (between surface groups). The commonly
occurring local constraints are:

• orthogonal/parallel curves and surfaces
• concentric curves and surfaces
• tangential curves and surfaces
• rounded numerical values
• fix numerical values

The commonly occurring global constraints are:

• common extrusion directions
• common rotational axis
• global grid
• global axis of symmetry
• global rotational symmetry

From the scanning we didn’t have informations about the
constraints, so we need to add that explicitly, or wee need
to recognize it by some algorithm. Due to noise, and scan-
ning inaccuracy, the constraints satisfying only in some tol-
erance level, see Figure 2. If we have a constraint system, we
need to fit the surfaces besides the satisfying constraints. We
called this process as constrained fitting.

Let {si} and {pi j} as above. The goal is minimize

f (x) = ∑
i

αi ∑
j

d(pi j,si)
2,

besides the constraint system satisfying. The αi weights
can depend for example on the area of surfaces. Our goal
is minimize the average square distance between surfaces
and the point clouds. There are numerical methods to solve
this problem18 13, our methods based on an algorithm by P.
Benkő, which uses modified newton method.2

1.3. Our project

In the most of reverse engineering systems, the constraints
defined explicitly by a user. In fact, many of them can easy

α = 89.834◦

r = 0.116

h= 0.544

Figure 2: Constraint inaccuracies due to noise.

recognizable. In this paper we present an algorithm, how to
state and evaluate hypothesizes for the possible local geo-
metric constraints.

Furthermore we present methods to detect some full or
partial global symmetries, including grids and axis of sym-
metries.

1.4. Previous work

There are several methods for constrained fitting. Our work
based on P. Benkős algorithm2. Langbein et al. started to de-
tect partial symmetries on point sets, the method based on
algebraic considerations9. Another important publication is
Mitra et. al work, where they detect partial global symme-
tries on 3D models by feature points12.

2. Constrained fitting – basics

Now we present the base steps of P. Benkős algorithm, to
help us understanding the new methods.

Consider the profile curve in Figure 3. If we fit the circles
independently, the going to wrong by the tangential connec-
tions. Therefore the solution is the constrained fitting. In this
example, let ci be the circles with (Ai,Bi,Ci,Di) parameters,
where Ai(x2 + y2)+Bix+Ciy+Di = 0 the equations of the
circles. The minimalisable average square distance is

f (x) = ∑
i, j

d2
i, j =

1
ni

∑
j
(Ai(x

2
i j + y2

i j)+Bixi j +Ciyi j +Di)
2.

The constraint system includes the

• normalization constraints (B2
i +C2

i −4AiDi = 1),
• tangential constraints (for adjoint circles 2A jDi +

2AiD j−BiB j−CiC j±1 = 0).

2.1. The numerical method

Let be denote the surfaces by {si}, and the corresponding
point clouds are {pi j}. The goal is minimize the average

(12/2013).

I. Kovács, T. Várady / Perfecting 3D computer models reconstructed from measured data 3

Figure 3: Profile curve

square distance between surfaces and the point clouds, such
the constraints are satisfied.

f (x) = ∑
i

αi ∑
j

d(pi j,si)
2

Where d(pi j,si) denotes the distance between the si sur-
face and the p point, and αi are positive weights assigned
to each surface. Let denote the constraint equations in form
ck = 0, so we can write the globally system of equations

c(x) = 0.

So the goal is minimize f besides the condition c = 0.

Let c(x) = (c1(x), ...,ck(x)) where the constraints are in
priority queue. Suppose that f (x) and c(x) smooth enough
(at least C2). The method is based on Newton iteration. We
approximate c in first order, and f in second order. Let’s see
the Taylor approximation of c and f around x0.

c(x0 +d)≈ c(x0)+ c′(x0)d

f (x0 +d)≈ f (x0)+ f ′(x0)d+
1
2

dT f ′′(x0)d

By using this equations, the problem locally is in the form

Cd̃ = 0 (1)

d̃T Ad̃→min,

where d̃ = (d1, ...,dn,1), C = [c′(x0)|c(x0)] and A is the fol-
lowing (n+1)× (n+1) size matrix:

A =

[
f ′′(x0) f ′(x0)

f ′(x0)
T 0

]
.

To calculate d̃ we reduce it to a lower dimensional vec-
tor d∗ by (1), such that d∗ has an independent coordi-
nates. For this, we calculate M matrix, such d = Md∗, and
CM = 0. Now the dimension of d∗ give us, how many in-
dependent variables are there in the system. Finally we can
solve d∗T A∗d∗ → min, where A∗ = MT AM, without con-
straints, which is solvable by a simple system of linear equa-
tions.

The way of calculate M is very similar to the Gauss elim-
ination. During the elimination, we can check if some con-
straints contradict to each other, or if the system is overde-
termined.

2.2. Auxiliary objects

For more complicated constraints we need use auxiliary ob-
jects. Let us consider the following constraint: three lines
meets in one point. Formulate this constraint with equations
is bit more complicated. The easier way, if we introduce a
point object that each line passing through. Now we call that
point as auxiliary object. We note that, to the auxiliary ob-
jects never belongs a point set, but its an important parts of
the fitting.

3. Automatic detection of local constraints

Let c(x) = 0 a simple constraint between two object. Let ε

ba a tolerance level. The c constraint is within the tolerance
if and only if |c(x)|< ε, and we want validate the constraint
if it’s hold. Fo this we introduce the following modified con-
straint equation:

sε(x) :=
{

x if |x|< ε

0 otherwise.

We observe that, if c(x) is out of the tolerance level, then it
vanishes, so it is the constant zero constraint, which causes
nothing modification to the fitting. All other cases sε(x) is
equal to c(x).

We note that, necessary condition for c, that c(x) is a good
representation for the deviation from the considered con-
straint. For example for the line meets point constraint, we
must use the line-point distance function

cpl(x) =
|Ax0 +By0 +C|√

A2 +B2
.

Also note that, sε is not continuous, but piecewise contin-
uous function, so if we calculate numerically the derivative,
we need make it piecewise.

To detect constraints automatically, we take the modified
constraint for all object pair. The numerical method use only
the constraints within the tolerance level. Let denote S= {si}
the set of objects, and {c j} are the constraint types, such
c j(s1,s2) denote the concrete constraint between s1 and s2.
So for all c j, consider the following constraint set:

C j = {sε j (c j)(s1,s2)|s1,s2 suitable for c j}.

So the global constraint system include the explicitly
added constraints, and all C j-s, the modified constraint sets.

We can handle the more complex locally constraints too.

(12/2013).

4 I. Kovács, T. Várady / Perfecting 3D computer models reconstructed from measured data

(a)

(b)

(c)

Figure 4: Automatically detected constraints: (a) initial
state; tolerance levels in the (b) and in the (c) cases, the tol-
erances: 10/10 degrees ’lines orthogonal’; 10/10 unit ’line
pass the center of circle’; 15/25 unit for the ’line tangent
circle’ constraint.

(a) (b) (c)

Figure 5: Three lines meets a common point: (a) initial
state; (b) the investigated auxiliary points; and, (c) detect
the ’points are equal’ constraint.

We can investigate the corresponding auxiliary objects auto-
matically, and then check the tolerances. Let see the follow-
ing example: if we want to detect the three line meets in one
point constraint, we create auxiliary points by the all inter-
sections, with the corresponding line meets point constraints,
and the algorithm can detect, if the intersection points are
enough close to each other. Then we can conclude the three
line meets in one point is satisfied.

4. Find the best fit global grid

In this section, we investigate the ’grid’ object, the corre-
sponding constraints, and how to detect the best fit global
grid to the data points.

The grid is an 5 dimensional auxiliary object, the param-
eters consists

• the orientation of grid (n),
• the origin of grid (p0),
• and the positive grid constant (c).

We note that, the parameters are not well defined by the
grid, because we can select all intersection points for the ori-
gin, and we have four ways to define the orientation.

We also can define constraints with the grid, with the sim-
ilar way as earlier. For example the equation of the line (Ax+
By+C = 0) is orthogonal/paralell to the grid constraint, is in
the form c(x) = min(|An1−Bn2|, |An2 +Bn1|) = 0. We also
can define the point meets grid constraint: 〈p− p0,n〉/c and
〈p− p0,n

⊥〉/c are integers. The most important constraints
with the grid:

• some parameter (n, p0,c) is fix,
• point pass to the grid,
• line orthogonal/parallel to the grid,
• line pass to the grid.

For detect the above constraints, we can use the automatic
detection as wee see earlier, but it works only, if we have an
almost perfect initialization of the grid. To detect the best fit
global grid, our algorithm has four base steps (see Figure 6):

1. determine the best orientation,
2. fitting the corresponding lines,
3. determine the grid division size,
4. fitting objects to the grid.

4.1. Determine the orientation

Assume that, all lines belongs to a straight section. Let us
denote the length of li is h(li), an the argument of the nor-
mal vector of li in radian is arg(li). In the terms of grid α

and α+π/2 has the same orientation, so we work with the
angles modulo π/2. Now the solution is given by clustering
the points. The radius of clusters depends on the tolerance
level. The weight w(S) = ∑l∈S h(l). We select the best clus-
ter (where w(S) is maximal), and the weighted average of
angles gives the best orientation.

(12/2013).

I. Kovács, T. Várady / Perfecting 3D computer models reconstructed from measured data 5

(a) (b)

(c) (d)

Figure 6: Detect grid: (a) the initial state (independent fit-
tings); (b) the optimal orientation; (c) re-fitted lines; and (d)
the final fitting with the optimal grid constant.

4.2. Determine the grid division size

After setting up the best oriented grid, we fit the correspond-
ing lines to the orientation, by automatic method, as we have
seen in Section 3. Now the problem is find the best approxi-
mately common divisor to the distances of lines.

Let us denote the lines fitted to the orientation are {li},
and the all absolute distances between the parallel lines are
{di j} = {nl}. If d is a suitable grid division size, then the
average residue from {nl} is small. The average residue is in
the form

δ(d) = ∑
l

min
({nl

d

}
,1−

{nl
d

})
,

where {x} denotes the fraction part of x.

Now the goal is find the minimum of δ(d) in the
[dmin,dmax] interval. Easy to see, δ function is piecewise
monotone, and the monotonicity fails in the numbers in form
nl/k for some nl , and k positive integer. Therefore we need
to find the minimum only in that points, so we can find the
minimum in O(N2nmax/dmin) steps, where N is the number
of distances, and nmax = maxl nl .

After setting up the grid division size, we can automati-
cally detect the line pass grid constraints.

5. Estimate global symmetries

Our another examined global constraint is the axis of sym-
metry. We present an algorithm for line-circle curves. To
detect them, first we get all possibly axises (for some rea-
son), evaluate them, and we select the best one. Let denote

(a) (b)

(c) (d)

Figure 7: Detecting axis of symmetry: (a) initial state; (b)
axis candidates; (c) the best axis (70%); and (d) the second
best axis (41%).

P = {pi} the endpoints of the sections and centers of circles,
and L = {li} the lines.

The main steps of the algorithm (see Figure 7):

1. Collect the perpendicular bisectors between the points of
P, and the angle bisectors between the lines of L. That
lines are the auxiliary lines.

2. Clustering between the auxiliary lines.
3. Evaluate the clusters (get the corresponding axises and

grade the symmetry).
4. Select the best cluster, and the best axis. Constrained fit-

ting.

The auxiliary lines A consists the perpendicular bisec-
tors between the points of P: A1 = {PBisector(pi, p j) : i <
j}, and the angle bisectors between the lines of L: A2 =
{ABisector(li, l j) : i < j}.

Now we clustering between the lines of A in two steps.
First by the argument of normals (modulo π), then by the
distance of the origin. The size of the clusters are not the
best measure to the goodness of the symmetry, which shows
a several examples. For each cluster C, lC denote the average
of C, that are the axis candidates.

By the clusters, we have information about which sections
or circles are symmetric by the axis. For each pairs, we deter-
mine the arc of symmetric part. The sum of these arcs gives
the weight of lC, and we can select best one.

We also can define constraints for axis of symmetry by
auxiliary objects. We use the

• axis is perpendicular bisector of a section,
• axis is angle bisector of two lines

(12/2013).

6 I. Kovács, T. Várady / Perfecting 3D computer models reconstructed from measured data

Figure 8: Segmented object from measured data

constraints. Finally we make the constrained fitting with the
best axis.

6. Conclusion

In our project we worked with planar curves. The presented
algorithms possibly extended to 3D. In future we want de-
tect another global symmetries, such as rotational and trans-
lational symmetries. Also important way, extending the con-
strained fitting to free-form surfaces.

Acknowledgements

We would like to thank Péter Salvi, György Karikó and Pál
Benkő. The research supported by OTKA (101845).

References

1. Geomagic, Inc., http://www.geomagic.com.

2. P. Benkő, G. Kós, T. Várady, L. Andor, and R. R. Mar-
tin. Constrained fitting in reverse engineering. Com-
puter Aided Geometric Design, 19(3):173–205, 2002.

3. P. Benkő, R. R. Martin, and T. Várady. Algorithms
for reverse engineering boundary representation mod-
els. Computer-Aided Design, 33(11):839–851, 2001.

4. P. Benkő and T. Várady. Segmentation methods for
smooth point regions of conventional engineering ob-
jects. Computer-Aided Design, 2004.

5. I. Coope. Circle fitting by linear and nonlinear least
squares. Journal of Optimization Theory and Applica-
tions, 76(2):381–388, 1993.

6. J. Jiang, Z. Chen, and K. He. A feature-based method
of rapidly detecting global exact symmetries in CAD
models. Computer-Aided Design, 45(8-9):1081 – 1094,
2013.

7. Y. Ke, W. Zhu, F. Liu, and X. Shi. Constrained fit-
ting for 2D profile-based reverse modeling. Computer-
Aided Design, 38(2):101–114, 2006.

8. F. C. Langbein. Beautification of reverse engineered ge-
ometric models. PhD thesis, Cardiff University, 2003.

9. M. Li, F. C. Langbein, and R. R. Martin. Detecting
approximate incomplete symmetries in discrete point
sets. In Proceedings of the 2007 ACM symposium on
Solid and physical modeling, pp. 335–340. ACM, 2007.

10. G. Lukács, R. R. Martin, and D. Marshall. Faithful
least-squares fitting of spheres, cylinders, cones and
tori for reliable segmentation. In Computer Vision-
ECCV’98, pp. 671–686. Springer, 1998.

11. P. Marks. Capturing a Competitive Edge Through Dig-
ital Shape Sampling & Processing (DSSP). SME Blue
Book Series, 2005.

12. N. J. Mitra, L. J. Guibas, and M. Pauly. Partial
and approximate symmetry detection for 3D geometry.
ACM Transactions on Graphics (TOG), 25(3):560–568,
2006.

13. J. Porrill. Optimal combination and constraints for ge-
ometrical sensor data. The International Journal of
Robotics Research, 7(6):66–77, 1988.

14. H. Pottmann, S. Leopoldseder, and M. Hofer. Approx-
imation with active B-spline curves and surfaces. In
Computer Graphics and Applications, 2002. Proceed-
ings. 10th Pacific Conference on, pp. 8–25. IEEE, 2002.

15. V. Schomaker, J. Waser, R. t. Marsh, and G. Bergman.
To fit a plane or a line to a set of points by least squares.
Acta crystallographica, 12(8):600–604, 1959.

16. T. Várady and R. R. Martin. Reverse engineering.
G. Farin, J. Hoschek, M. S. Kim, Handbook of Com-
puter Aided Geometric Design, Chapter 26, Elsevier,
2002.

17. T. Várady, P. Salvi, 3D-s számítógépes geometria és
alakzatrekonstrukció tárgy diasorok, BME IIT (2013)

18. N. Werghi, R. Fisher, C. Robertson, and A. Ashbrook.
Modelling objects having quadric surfaces incorpo-
rating geometric constraints. In Computer Vision-
ECCV’98, pp. 185–201. Springer, 1998.

(12/2013).

