
Graphical Models 82 (2015) 44–57

Contents lists available at ScienceDirect

Graphical Models

journal homepage: www.elsevier.com/locate/gmod

Applying geometric constraints for perfecting CAD models in

reverse engineering

István Kovács∗, Tamás Várady, Péter Salvi

Budapest University of Technology and Economics, Hungary

a r t i c l e i n f o

Article history:

Received 12 November 2014

Revised 15 April 2015

Accepted 10 June 2015

Available online 16 June 2015

Keywords:

Reverse engineering

Constrained fitting

Approximate and partial symmetry

a b s t r a c t

An important area of reverse engineering is to produce digital models of mechanical parts

from measured data points. In this process inaccuracies may occur due to noise and the nu-

merical nature of the algorithms, such as, aligning point clouds, mesh processing, segmenta-

tion and surface fitting. As a consequence, faces will not be precisely parallel or orthogonal,

smooth connections may be of poor quality, axes of concentric cylinders may be slightly tilted,

and so on. In this paper we present algorithms to eliminate these inaccuracies and create “per-

fected” B-rep models suitable for downstream CAD/CAM applications.

Using a segmented and classified set of smooth surface regions we enforce various constraints

for automatically selected groups of surfaces. We extend a formerly published technology of

Benkő et al. (2002). It is an essential element of our approach, however, that we do not know

in advance the set of surfaces that will actually get involved in the final constrained fitting.

We propose local methods to select and synchronize “likely” geometric constraints, detected

between pairs of entities. We also propose global methods to determine constraints related

to the whole object, although the best-fit coordinate systems, reference grids and symmetry

planes will be determined only by surface entities qualified as relevant. Lots of examples illus-

trate how these constrained fitting algorithms improve the quality of reconstructed objects.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Reverse engineering (digital shape reconstruction) is an ex-

panding and challenging area of Computer Aided Geometric

Design [2]. This technology is utilized in various applications

where a given physical object is scanned in 3D, and a com-

puter representation is needed in order to perform various

computations. A wide range of applications emerges in engi-

neering, medical sciences, and to preserve the cultural her-

itage of mankind [3].

For CAD models the process can be split into the following

phases:
∗ Corresponding author.

E-mail address: kovika91@gmail.com (I. Kovács).

http://dx.doi.org/10.1016/j.gmod.2015.06.002

1524-0703/© 2015 Elsevier Inc. All rights reserved.
(1) 3D data acquisition (scanning), (2) filtering and merg-

ing point clouds, (3) creating triangular meshes, (4) simplify-

ing and repairing meshes, (5) segmentation (partitioning into

disjoint regions), (6) region classification, (7) fitting primary

(functional) surfaces, (8) fitting connecting surfaces (e.g. fil-

lets), (9) perfecting surfaces (including constrained fitting and

surface fairing), (10) creating a B-rep model (i.e., stitching

surfaces and building up a topological structure), (11) export-

ing to CAD/CAM systems.

In the majority of engineering applications, it is crucial

that the reconstructed models satisfy various geometric con-

straints. The primary surfaces—and their associated direc-

tions and axes, if any—must obey various rules, such as being

orthogonal, parallel, tangential, symmetric, concentric, and

so on. If we approximate the segmented regions separately,

one by one, we may obtain inaccurate surfaces and poor

CAD models. This is due to the noise and incompleteness of

http://dx.doi.org/10.1016/j.gmod.2015.06.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/gmod
http://crossmark.crossref.org/dialog/?doi=10.1016/j.gmod.2015.06.002&domain=pdf
mailto:kovika91@gmail.com
http://dx.doi.org/10.1016/j.gmod.2015.06.002

I. Kovács et al. / Graphical Models 82 (2015) 44–57 45

Fig. 1. Segmented object: (a) view 1; (b) view 2. (For interpretation of the

references to color in this figure legend, the reader is referred to the web

version of this article)..
measured data, and the numerical nature of the subsequent

algorithmic phases, such as merging multiple data sets, dec-

imating and repairing triangular meshes, segmentation, and

least-squares fitting without constraints.

The goal of our research is to perfect CAD models created

from measured data. We introduce techniques to automati-

cally detect likely engineering constraints, and enforce these

by performing constrained fitting. We work with the follow-

ing assumptions.

(i) Our input is a segmented mesh containing a set of

regions. In most cases, this means that the highly curved

triangle-strips corresponding to fillets or sharp edges get re-

moved, and thus a numerically stable set of disjoint regions

is obtained that corresponds to the face structure of the final

B-rep model—an example is shown in Fig. 1.

(ii) By means of classification, a surface type has already

been assigned to each region providing the best local approx-

imation to the underlying data points.

(iii) We deal with the most frequent engineering surfaces:

planes, quadric surfaces (cylinders, cones, spheres), extruded

and drafted surfaces (defined by a direction vector and a pro-

file), rotational surfaces (defined by an axis and a profile), and

the remaining surfaces considered as free-form. (Constraints
for free-form surfaces and general sweeps are going to be

subject of future research.)

Let us take the above simple CAD model and look at a few

problems that motivate our work. This object has been mea-

sured in a general 3D workspace, so its base surfaces are not

aligned to an optimal coordinate system. The planar surfaces

at the bottom and top (green) are not perfectly parallel, nei-

ther perpendicular to the planar faces at the left and right

sides. The horizontal cylindrical holes (yellow) are unlikely

to share the same axis and radius. The two extruded surfaces

(beige) on the top may have two slightly different profiles

and directions of extrusion. The two vertical cylinders (yel-

low) in Fig. 1(b) will not be exactly concentric, their axis will

not necessarily be contained in the plane of symmetry, and

will not be perpendicular to the top planar face (green), and

so on. Nothing guarantees that the reconstructed object will

be symmetric.

Our proposed techniques are based on recognizing the

most likely constraints using the initial parameters of in-

dividually fitted surfaces. We select groups of relevant sur-

faces that are likely to comprise a set of parallel/orthogonal

entities, share common axes and directions, force profile

curves to be identical or symmetric, and so on; then refit

while maintaining these constraints. We also search for likely

best-fit coordinate systems that align the majority of surface

elements and refit accordingly. We locate relevant surface

groups that are found fully or partially symmetric and en-

force symmetry accordingly. We attempt to compute a global

reference grid, where the dimensions match a well-defined

grid-size, that likely corresponds to the original design in-

tent, and snap the related elements. All these problems are

converted into solving a large system of non-linear algebraic

equations.

Handling constraints may seem relatively easy for a hu-

man engineer, when the constraint types and the set of rel-

evant surfaces are explicitly specified. However, this is fairly

difficult for a program, where even the group of surfaces is

unknown for which the constraints needs to be set up. While

the majority of commercial systems offers a wide range of

operations to tweak surface parameters directly, here we

search for automatic techniques, that can save a large amount

of manual work and reduce errors. In this context users re-

main involved at two levels: (i) prescribe “likelihoods” by

setting various tolerances (depending on the quality of mea-

sured data and the dimensions of the object), and (ii) check

and approve perfected surface geometries, as constrained fit-

ting is moving forward.

The paper is structured as follows. In Section 2 previous

work is reviewed. In Section 3, the method of Benkő et al. [1]

is revisited, as this constitutes the basis of the current work.

Section 4 deals with local constraint detection and satisfac-

tion. In Sections 5–7 algorithms are presented to compute

global constraints that relate to the whole, or at least large

parts of the object including best-fit coordinate systems, ref-

erence grids and symmetry planes. Test examples at the end

of each section illustrate the results.

2. Related work

Discovering design intent and inherent structural proper-

ties is an important topic in many areas. Related publications

46 I. Kovács et al. / Graphical Models 82 (2015) 44–57
span a diverse range of research, from computer graphics

and medical imaging to computer aided design and reverse

engineering. This variety is based on algorithms that use

different types of input data: bitmaps, point clouds, meshes,

voxels, or even complete boundary representation models.

Naturally, the choice of data largely influences the techniques

we may apply and the output we may produce including

various properties, geometric relationships, shape features,

segmented data sets or fully-evaluated CAD models.

One essential intrinsic characteristic of a model is sym-

metry. A good state-of-the-art review was published recently

by Mitra et al. [4], discussing the most essential issues and al-

gorithms, including symmetry groups, global and local, exact

and approximate symmetries, and other topics. A long list of

applications is also given including model acquisition, rep-

resentation and synthesis, though relatively small attention

is directed to the specific problems of perfecting mechanical

engineering objects, which is the main subject of our paper.

Here we do not go into the details of the most im-

portant symmetry algorithms, since this report contains a

long list of related publications and analyzes the “pros and

cons” of the different methods. The first approaches (e.g. [5])

handled only exact global symmetries. This was, however,

soon amended by the definition of symmetry distances [6,7],

eventually leading to efficient detection of partial symme-

tries (both local and global) on voxel data.

Discovering structural regularities, in particular partial or

full symmetries, is a well-studied area also for B-rep models.

Tate and Jared [8] present a detailed review on related top-

ics, and discuss an algorithm to compute symmetries based

on matching various topological entities, such as edge-loops.

In a recent paper, Li et al. [9] explore the problem of ex-

tracting exact symmetries from B-rep models using a divide-

and-conquer approach. The above publications, however, are

not well-suited for reverse engineering applications and in

the rest of this section we will review some research articles

dealing with this specific problem.

The reconstruction of CAD models is a very complex com-

putational process with various phases involving mesh pro-

cessing, segmentation and surface fitting [2]. Here we deal

only with one step, which comprises a separate research

area: perfecting models. In general, for detecting various en-

gineering constraints and high-level structures, a segmenta-

tion and some preliminary surface approximations need to

be created. The majority of engineering objects obey well-

defined construction rules, and combine a set of surfaces

ranging from planes and natural quadric surfaces, through

extruded, rotational and lofted surfaces, to free-form geome-

tries.

Reconstruction methods differ in what sort of rules can

be detected and enforced including (i) a set of usual lo-

cal constraints, such as parallelism, tangency, orthogonal-

ity, concentricity, and (ii) high-level structural dependencies,

e.g. alignments or different sorts of symmetries. Methods

also differ in the range of surface types they are capable to

handle. State-of-the-art solutions follow different strategies.

In the first group of approaches information is directly

extracted from point cloud data. RANSAC-based methods

[10,11] iteratively segment the point cloud through a se-

quence of trial-and-error steps discovering primitive sur-

faces, such as planes, cylinders, cones and spheres, then
enforce well-defined angular and alignment constraints

amongst these elements. This is an impressive approach: it

can automatically locate disjoint regions of the same surface,

and seems to be computationally efficient. Difficulties may

arise when more complex, profile-based surfaces need to be

reconstructed over random point samples, and more gen-

eral constraints—e.g., tangencies—need to be satisfied. For

conflict-free constraints a graph-reduction method is used.

The lack of an underlying mesh may produce difficulties at

model creation.

Important point cloud-based methods for detecting pro-

file curves and related constraints of extruded and rotational

surfaces are discussed in Ke et al. [12]. Automatically rec-

ognized constraints include orthogonality, tangency, equal

distances, etc. They also use a modification of the Iterative

Closest Point algorithm to find symmetry planes. Another in-

teresting point cloud-based method was presented by Liu

et al. [13], that combines surface fitting with multiple-view

registration.

In the second group of approaches we assume that there

exists some a priori knowledge about the entities that need

to be linked by different constraints. The important publica-

tion of Benkő et al. [1] thoroughly investigates this problem;

it deals with a very wide variety of possible constraints over a

given set of entities, presents an efficient numerical method

to solve large non-linear constraint systems. A very useful

feature of this method is that redundant and contradictory

constraints get automatically discarded. Our work is consid-

ered to be an extension of this approach.

There are two crucial issues here worth mentioning. (i)

To compute Euclidean distances from the entities involved

would typically require formulae with square-roots. These

are generally replaced by so-called faithful representations,

that are algebraically much simpler and still closely approxi-

mate Euclidean distances in the vicinity of data points, see re-

lated work of [14,15]. (ii) Another important issue is applying

efficient representations, that make it possible that terms con-

taining data points do not need to be recomputed in each it-

eration step, thus computations can be significantly speeded

up [1].

A couple of interesting papers related to symmetry anal-

ysis and beautification of reverse engineered models were

published at Cardiff University [16–18]. These papers focus

on detecting full and partial, approximate symmetries; they

apply algebraic methods and fundamentally process feature

points. One potential difficulty is that these algorithms as-

sume that these feature points always exist after creating

and evaluating a preliminary model. The authors also deal

with perfecting distances, and recognizing divisions by reg-

ular units. This problem is also investigated in our paper in

a more general manner. In [16] the solution of the constraint

system is improved by eliminating the inconsistencies of the

constraint set by graph operations.

Although we have adapted some techniques from previ-

ously published papers, our approach can be distinguished

by the following aspects. We focus on reverse engineering

CAD models using a pre-segmented mesh of smooth disjoint

regions and initial surface approximations. This is needed

to build up a hypothetical constraint set and select a group

of relevant surfaces that will actually take part in the final

constrained fitting. Besides planes and natural quadrics we

I. Kovács et al. / Graphical Models 82 (2015) 44–57 47

Fig. 2. Constrained fitting: (a) profile of a gear wheel; (b) three circles with prescribed tangency; (c) independent fitting—discontinuity; (d) fitting with

constraints—smooth connections.
work with extruded and rotational surfaces, as well. We at-

tempt to perfect the primary surfaces of a B-rep model, and

do not deal with its final topological structures, such as edges

and face loops, as our view is that a good B-rep can only be

built after having the surfaces perfected. We handle a fairly

wide set of local and global constraints, and focus on semi-

automatic techniques.

3. Basic concept of constrained fitting

The segmented mesh in itself does not carry information

about the constraints associated with the surfaces of the ob-

ject; these need to be prescribed either by the user, or de-

tected and set by some “intelligent” algorithm.

Local surface fitting can be formulated as follows. Let us

denote the surfaces by {si}, and the corresponding data points

by {pij}. All surface approximation methods minimize the

sum of squared distances between the surface and the point

cloud in some way. Let xi contain the parameters of the ith

surface, then we wish to minimize

fi(xi) =
∑

j

d(pi j, si(xi))
2. (1)

In this paper we cannot go into the details of how differ-

ent types of surfaces (planar, quadric, extruded, rotational,

free-form surfaces) can be approximated; some related algo-

rithms can be found in [2].

In order to perfect our models we apply constrained fitting

that always involves approximating multiple point clouds

contained in different surface regions. The parameter vector

x = (x1, . . . , xn) stores all the parameters of the correspond-

ing surfaces. A constraint is typically given as a non-linear
algebraic equation in the form ck(x) = 0, where each con-

straint connects certain parameters of some surfaces. We for-

mulate the global constraint system using the full parameter

vector as

c(x) = 0. (2)

We need to minimize a single expression of squared dis-

tances while the constraints are satisfied

f (x) =
∑

i

αi

∑
j

d(pi j, si)
2, (3)

where αi-s denote positive weights, that can be associated

with the individual surfaces, for example, by surface area.

To sum it up: constraints have high priority and get satis-

fied with a very tight tolerance, while approximating the data

is “secondary” and accuracy can be ensured only in best-fit

(least-squares) sense.

Before going into the details of solving large constraint

systems, we show a simple example of how constraints can

be formulated.

3.1. Constraints for a smooth profile curve

Consider a planar profile curve with three already seg-

mented data sets, as shown in Fig. 2(b). If we fit these cir-

cles independently, the tangential constraints will not be

satisfied, but with constrained fitting a good solution will

be obtained. In this example, ci denotes the circles to be

constrained with parameters (Ai, Bi, Ci, Di), defined by the

equations fi(x, y) = Ai(x2 + y2) + Bix + Ciy + Di = 0. ci will

approximate n points. The average squared distance to be
i

48 I. Kovács et al. / Graphical Models 82 (2015) 44–57

C

v1 v3

v2

(a)

v1

v3

v2

(b)

Fig. 3. Three lines with (a) redundant, or (b) contradictory constraints.
minimized is as follows:

f (x) =
∑
i, j

d2
i, j

=
∑

i

1

ni

∑
j

(Ai(x2
i j + y2

i j) + Bixi j + Ciyi j + Di)
2.

The constraint system includes

• three normalization constraints (B2
i

+ C2
i

− 4AiDi = 1),

and
• two tangential constraints (2A jDi + 2AiD j − BiB j − CiCj ±

1 = 0).

The normalization constraints come from applying a

faithful distance representation, i.e. |∇(fi(x, y))| = 1. The

tangential constraints come from the equations fi(x0, y0) =
f j(x0, y0) (circular arcs have a common endpoint) and

∇(fi(x0, y0)) = ∇(f j(x0, y0)) (circular arcs share a common

tangent), where x0 and y0 will be eliminated. Finally, seven

independent variables remain to compute the best-fit circles

for the given data set. Related numerical values of this test

example will be given at the end of the section.

3.2. The numerical method

Let us continue to briefly present the method of Benkő

et al. [1], as this is necessary to understand the rest of the pa-

per. Using the previous notations, let us order the constraints

by priority as c(x) = (c1(x), ..., ck(x)), and assume that f(x)

and c(x) are smooth enough (at least C2). Here we have a

highly non-linear system of equations to be solved using a

special Newton iteration. We approximate c in first order, and

f in second order. The Taylor approximations of c and f around

x0 are the following:

c(x0 + d) ≈ c(x0) + c′(x0)d, (4)

f (x0 + d) ≈ f (x0) + f ′(x0)d + 1

2
dT f ′′(x0)d. (5)

In each step of the iteration we need to determine a small

difference vector d. Using the above equations, these can be

written locally in the form

d̃ = 0, (6)

d̃T Ad̃ → min, (7)

where d̃ = (d1, . . . , dn, 1), C = [c′(x0)|c(x0)] and A is an (n +
1) × (n + 1) size matrix, as follows:

A =
[

f ′′(x0) f ′(x0)
f ′(x0)

T 0

]
. (8)

In order to calculate d̃ we have to reduce it to a lower di-

mensional vector d∗ by (6), such that d∗ has only independent

coordinates. We calculate a matrix M, such that d = Md∗, and

CM = 0. Now the dimension of d∗ tells us how many inde-

pendent variables exist in the system. Finally, we can solve

d∗TA∗d∗ → min without constraints, where A∗ = MT AM, and

this can be solved as a simple system of linear equations (see

details in [1]). We note that this minimization is always solv-

able. The proof is based on the fact, that f′ ′(x0) is symmetric

positive definite in this case.
The way of calculating M is very similar to Gauss elim-

ination as discussed in [1]. During elimination, we check if

the system is over-determined or if some of the constraints

contradict each other. This is illustrated by two very simple

examples, see Fig. 3. The first is a redundant case, the direc-

tion vectors of three lines must satisfy the following three

constraints: v1⊥v2, v2⊥v3 and v1‖v3. The second is a contra-

dictory case, where the three lines should be pairwise per-

pendicular, i.e., v1⊥v2, v2⊥v3 and v1⊥v3. Then we obtain the

following two plus one constraint equations, respectively:

c1 : (v1i + d1, v2i + d2) = 0,

c2 : (v2i + d2, v3i + d3) = 0,

c3a : (v3i + d3, v1i + d1) = −1,

c3b : (v3i + d3, v1i + d1) = 0,

where v1i, v2i, v3i denote the direction vectors at the cur-

rent iteration, and d = (d1, d2, d3) are the small unknown

difference vectors to solve the system. In the first “redun-

dant” case, take the third constraint c3a; here v1i 	 −v3i, thus

d1 	 −d3, consequently the second equation becomes iden-

tical to the first one within a very small tolerance, and can

be disregarded. In the second “contradictory” case with con-

straint c3b, the vector d2 can be expressed in two different

ways from c1 and c2, thus one of these constraints must be

omitted.

3.3. Auxiliary objects

The use of the so-called auxiliary objects is an important

idea in constrained fitting. We illustrate this through a simple

example. Take the three lines of Fig. 5(a) that are supposed to

meet in a common point. We can formulate the related con-

straints by taking lines 1 and 2, compute their intersection

point and constrain this to lie on line 3; then we take lines 2

and 3, and lines 3 and 1 with similar constraints. This set of

equations defines a relatively simple problem in a very com-

plicated way.

An alternative solution is to introduce an auxiliary point

p. This is an unknown entity, but now we can define our

constraints by three simple equations, i.e., all three lines

must pass through p. Clearly, we have increased the num-

ber of unknowns in the parameter vector x, but the system

of equations—and all related Taylor approximants—have be-

come much simpler. Note, that the unknown surface param-

eters are generally associated with corresponding point sets,

but for auxiliary objects such a data point has no meaning.

Typical auxiliary entities include a point, a point and a nor-

mal, a distance, etc.; their exclusive role is to simplify the

system of equations and thus our computations. We will use

I. Kovács et al. / Graphical Models 82 (2015) 44–57 49

Table 1

Numerical analysis of unconstrained vs. constrained fitting for the three-arc profile curve.

Independent fit Tangential constraints Tangential and “radii are multiple of 10” constraints

Radius 1 (r1) 125.762 155.810 160

Radius 2 (r2) 50.590 51.683 50

Radius 3 (r3) 145.962 156.278 160

Average deviation from data points 0.996 1.046 1.132

Error of 1st tangential constraint 2.142 0 0

Error of 2nd tangential constraint 1.010 0 0

Error of ’r1 multiple of 10’ constraint 4. 238 4.190 0

Error of ’r2 multiple of 10’ constraint 0.590 1.683 0

Error of ’r3 multiple of 10’ constraint 4. 038 3.722 0

C

auxiliary objects for computing the best-fit coordinate sys-

tems, reference grids and symmetry planes in Sections 5–7,

respectively.

3.4. Test example: smooth profile curve

In this example, the three-arc profile case is analyzed;

the effect of constrained fitting is demonstrated by values in

Table 1. If we fit the three circles independently (Fig. 2(c)),

there will be small gaps and no tangential continuity be-

tween the adjacent arcs yielding poor quality (column 2).

When we apply constrained fitting (Fig. 2(d)), although the

average approximation error increases to a negligible extent,

the prescribed constraints will be satisfied (rows 5 and 6 in

column 3). We will return to this example in Section 6, when

further constraints to snap the radii to multiples of unit 10

will be added (rows 7–9 in column 4).

4. Automatic detection of local constraints

Let us start with a simple example. We wonder whether

pairs of lines are perpendicular or not, and we wish to

incorporate additional constraints into our system, if the

likelihood of being perpendicular is high. This can clearly

be controlled by a user-defined angular tolerance, i.e., extra

constraints will be added automatically, if two lines span an

angle between 90 ± ε.

Formally: let c(x) = 0 a simple constraint between two

objects, and ε the tolerance level. The c constraint is within

tolerance if and only if |c(x)| < ε, and we want to validate

whether the constraint holds. For this, we introduce the fol-

lowing function:

sε(x) :=
{

x if |x| < ε
0 otherwise.

We observe that if c(x) is out of tolerance, then sε(c(x))

vanishes, and the constant zero constraint will not modify

our system, otherwise sε(c(x)) reproduces c(x).

Here again we assume that c(x) represents a faithful (ex-

act or close to Euclidean) distance representation. For exam-

ple, for the line meets point constraint, we must use a normal-

ized line-point distance function

cpl(x) = |Ax0 + By0 + C|√
A2 + B2

.

Also note that sε is not continuous, but a piecewise con-

tinuous function, so if we calculate the derivative, we need to

make it piecewise, as well.
To detect constraints automatically, we take the modified

constraints for all object pairs. The numerical method will

enable only those constraints that are within the related tol-

erance level. The user typically defines different tolerances

for different (parallel, perpendicular, tangential, concentric,

etc.) constraints. Let us denote the set of objects by S = {si},
and the constraint types by {cj}, such that cj(s1, s2) denotes an

actual constraint between s1 and s2. Then for all cj, consider

the following constraint set:

j = {sε j
(c j(s1, s2)) : s1, s2 suitable for c j}.

Thus the global constraint system includes the explicitly de-

fined constraints, and the “likely” constraint set of Cj-s.

A somewhat artificial example with three circles and

three lines can be seen in Fig. 4 that shows different config-

urations created by different tolerances. Compare cases (b)

and (c). The angular tolerance of the “orthogonal lines” con-

straint is relatively tight in both cases, involving two lines out

of the three. The tolerance of “tangential line and circle” is

tight in case (b) snapping only the blue circle, and loose in

case (c) forcing two circles to be tangential to the almost hor-

izontal line.

We can also handle more complex local (i.e., not pair-

wise) constraints. For example, take the previously men-

tioned “three lines meet in a single point” constraint in Fig. 5.

We may create auxiliary intersection points for all three pairs

of lines, and by means of corresponding “line close to point”

constraints the algorithm can detect whether the three inter-

section points are likely to be coincident or not. In the former

case the three lines will be fitted simultaneously, enforcing a

common point of intersection.

4.1. Test example: a selected constraint set

The simple L-shaped object in Fig. 6 has nine surface en-

tities representing eight planar faces and a cylindrical hole.

We may request to set the pre-fitted surfaces to be accurately

parallel and perpendicular. At this point we do not know

whether all nine entities will be pairwise constrained, which

otherwise would lead to a set of 36 equations. If we select a

tight tolerance, it turns out that two vertical surfaces (shown

darker in the figure) do not belong to this constraint set and

must preferably be kept slightly tilted. Thus only seven rel-

evant surfaces will be linked and refitted over data points

in seven regions, and the constraint set will be reduced to

21 constraints. During the elimination steps further 15 re-

dundant constraints fall out, leaving only six independent

constraints. An example for such a minimal set can be the

50 I. Kovács et al. / Graphical Models 82 (2015) 44–57

Fig. 4. Automatically detected constraints: (a) initial state; (b and c) differ-

ent configurations created by different tolerance levels. (For interpretation

of the references to color in this figure legend, the reader is referred to the

web version of this article).
following: start with the bottom face, add three “parallel”

and one “perpendicular” constraints for the side and top

faces, and one more for the axis.

5. Best aligned coordinate systems

The majority of mechanical engineering parts are defined

in a well-aligned coordinate system, which means that the
majority of surface geometries are aligned to the principle

coordinate axes. Some other surfaces may be aligned to dif-

ferent, dependent coordinate systems, or not at all. In the

reverse engineering context, scanning may take place in a

workspace, where the object is positioned in a general ori-

entation. We wish to create a CAD model that is optimally

aligned, thus after a transformation we avoid tilted orthog-

onal views, and conveniently enforce constraints by the best

alignment(s). We take into consideration the most frequent

surface geometries, but will not deal with general sweeps

and free-form surfaces.

For each segmented region we associate not only the sur-

face type, but a direction vector di and the surface area Ai.

The direction for planes is the best-fit normal vector. The di-

rection for extrusions and drafted extrusions is an orthogo-

nal vector to the plane of their profile curves. For rotational

surfaces, including cylinders and cones, the associated direc-

tion is defined by the axis of rotation. The surface area is es-

timated as the sum of triangles in the given region. The total

estimated area of the object is A = ∑
i Ai.

Assume we have a coordinate system by mutually orthog-

onal unit vectors (nx, ny, nz). We can characterize the current

alignment by an angular tolerance ε in the following way.

First we collect surface entities that are being aligned

I(nx, ny, nz) = {i : |di × nx| < ε ∨ |di × ny|
<ε ∨ |di × nz| < ε},

then compute the Coverage of the coordinate system by

Coverage(nx, ny, nz, ε) =
∑

i∈I(nx,ny,nz)
Ai

A
.

For a poor alignment this number will be small, for a good

alignment it will be greater, but not necessarily close to 1, as

there may be free-form surfaces, or other surfaces that be-

long to different coordinate systems. Another measure is the

magnitude of the global approximation error for the aligned

surfaces, i.e.,

ApprErr(nx, ny, nz)

=
∑

i∈I(nx,ny,nz)
Ai min (|di × nx|, |di × ny|, |di × nz|)

A
.

Our goal is to search for a coordinate system with the

best Coverage, while ApprErr remains below a reasonable

threshold. Accepting a group of surfaces as “well-aligned”

also means that we have identified a complementary group

of “non-aligned” surfaces, so a new round of search for the

second best coordinate system can be started.

5.1. The algorithm

Each di vector represents a vector on the Gaussian sphere

weighted by Ai, and the surfaces will create a set of clusters.

Our goal is to find the best vector triplet to match this set. The

algorithm is organized by the principle of cluster growing. A

cluster C is characterized by a vector p, as follows:

p′ =
∑
di∈C

Aidi, p = p′

||p′|| .

Step 1. Take the direction vector di from the ith surface,

then check whether there already exists a cluster where p

I. Kovács et al. / Graphical Models 82 (2015) 44–57 51

Fig. 5. Three lines meet at a common point: (a) initial state; (b) pairwise

intersection (auxiliary points); and (c) “three points are equal” constraint

enforced.

Fig. 6. Test object with parallel and perpendicular constraints.

,

nx
ny

nz

Fig. 7. Dominant clusters on the Gaussian sphere. (For interpretation of the

references to color in this figure legend, the reader is referred to the web

version of this article).
(and at the same time −p) and di (or −di) span an angle less

than ε; if yes, include this surface, otherwise open a new one.

Perform this for all surfaces.

Step 2. Compute a primary weight for each cluster, as

G(p) = {i : |di × p| < ε}, W1(p) =
∑

i∈G(p)

Ai.

Step 3. Compute a secondary weight for each cluster, that

measures those clusters pk that are orthogonal to p, i.e.,

H(p) = {k : |〈pk, p〉| < ε}, W2(p) =
∑

k∈H(p)

Ak.

Step 4. Rank the clusters by W1(p) + W2(p), and select the

strongest p to be axis nz. In this way we have also defined an

orthogonal cluster set in a principle plane, which will contain

nx and ny.

Step 5. We compute a tertiary weight for pk from the or-

thogonal clusters of nz (i.e. k ∈ H(nz)) as

L(pk) = {l : |〈pl, pk〉| < ε, l ∈ H(nz)}, W3(pk) =
∑

l∈L(pk)

Al

and pick nx by the largest value of W1(pk) + W3(pk).

Step 6. Then ny = −nx × nz.

The heuristics of the algorithm can easily be understood

by means of Fig. 7. Here the red cluster is the strongest, hav-

ing good support from the blue clusters which are closely

orthogonal to the red. The other clusters (grey) are weaker

and get discarded. Once nz is fixed, we compute the strongest

cluster in the principle plane (blue) that determines the other

two axes.

This algorithm defines the direction of the main coordi-

nate axes to be associated with our model, however, further

steps are needed to determine the position of its origin. This
will be done in the next sections where symmetry planes and

best-fit reference grids are computed.

5.2. Constrained fitting for the best alignment

Based on the above computations we select the relevant

surfaces that are going to take part in the final constrained

fitting to obtain the best alignment; these surfaces belong to

the current I(nx, ny, nz). We introduce an auxiliary object of

three orthogonal unit vectors (nx, ny, nz), and refit by mini-

mizing the squared angular deviations related to the direc-

tion vectors di, i.e.,∑
i∈I(nx,ny,nz)

Ai min(|di × nx|2, |di × ny|2, |di × nz|2).

5.3. Test example: enhanced coordinate system

In this example we return to our previous test object

(Fig. 1). Compare the original coordinate system coming from

the measurement (a) with the computed best-fit alignment

(b); the whole data set has been transformed accordingly,

as shown in Fig. 8. The surfaces that match the new coordi-

nate system are colored dark. The number of aligned surfaces

grow from 6 to 18 (see planes, cylinders and extruded sur-

faces); the coverage indicator grows from 29.82% to 86.11%,

and the relative average approximation error changes from

1.864 to 0.078.

5.4. Test example: approximation error reduced

Our second example is about an object, which visu-

ally seems to be well-aligned, but analysis shows that the

approximation error for the matching surfaces is relatively

high. A closer visual inspection also discloses some tilting of

the face-set in Fig. 9(a). We need to determine the best align-

ment and reposition the object accordingly. As expected, this

does not change the coverage measure, which is 96.34% be-

fore and after, but significantly reduces the approximation

error from 0.419 to 0.041. There remained a few faces that do

not belong to the main coordinate system. For these the pro-

cess has been repeated, and a second, local coordinate system

was obtained, see Fig. 10.

52 I. Kovács et al. / Graphical Models 82 (2015) 44–57

Fig. 8. Enhanced alignment: (a) original, (b) optimized.

Fig. 9. (a) Minor misalignment, (b) correct alignment.

Fig. 10. Main and a local coordinate systems.

Fig. 11. Darmstadt test object (aligned, with grid). (For interpretation of the

references to color in this figure legend, the reader is referred to the web

version of this article).
5.5. Test example: almost full alignment

Here we investigate the classical Darmstadt benchmark

object (Fig. 11). After segmentation it has four planar (green)

faces (S1: bottom, S2: top, S3: front, S4: back); two rotational

faces (pink) (S and S : aligned to z- and y-axis, respec-
5 6
tively; one cone (cyan), (S7 with z-axis), one drafted extru-

sion (blue), and a hidden free-form face. All the planar faces,

the rotational axes and the direction of extrusion match

the best fit alignment (coverage: 91.53%, approximation

error 0.179).

6. Snapping and the best fit reference grid

Snapping values to integers or quantifying dimensions

to some multiples of base units is essential for good CAD

models.

(i) Explicit specification of parameters occurs frequently

in practice. For example, let an estimated radius of a cylinder

be 10.2, then the user may prescribe a radius 10, and refit

such a cylinder using the same data set.

(ii) A more complicated case is when only the quantifica-

tion number is prescribed (hereinafter denoted by h), and the

parameter values to be snapped are loosely estimated. As an

example, take the previous three-arc profile. We can add con-

straints to set the radii to be multiples of prescribed values,

i.e.,

r /h − round(r /h) = 0,
i i

I. Kovács et al. / Graphical Models 82 (2015) 44–57 53

Fig. 12. Grid matches prismatic object.
using the standard rounding rule. In this example, h was set

to 10 producing perfect radii, as shown in column 4 of Table 1.

It is nice to observe, that these constraints have set radius 1

and 3 to the same value.

(iii) The next level is when h is unknown. For example, we

wish to quantify the heights of the three horizontal planar

faces of the L-shaped object in Fig. 6. Assume we have ini-

tial height estimations as (z1 = 2.12, z2 = 11.97, z3 = 22.06),

and want to minimize the remainders when dividing the

height differences with the unknown h, i.e., we minimize the

expression

δ(h) =
∑
i, j

min

({
zi − z j

h

}
, 1 −

{
zi − z j

h

})
, (9)

where {x} denotes the fractional part of x. As a result we ex-

pect to obtain (z1 = 2, z2 = 12, z3 = 22).

(iv) The most general problem is, when an optimal refer-

ence grid needs to be determined with an unknown origin

(x0, y0, z0) and a cell size h. Taking our example, we wish to

minimize

δ(h, z0) =
∑

i

min

({
zi − z0

h

}
, 1 −

{
zi − z0

h

})
, (10)

which is going to shift the new origin to z0 = 2 yielding

heights (z1 = 0, z2 = 10, z3 = 20) in the new coordinate sys-

tem.

The search for a reference grid corresponds to the usual

engineering design practice, where objects are placed into a

coordinate system with an imaginary grid in the background,

and the majority of the surface parameters are set to quan-

tified values. In our context, we assume that the coordinate

axes have already been aligned, and we deal only with planes

and rotational surfaces (including cylinders and cones) that

have already been aligned parallel or orthogonal to the prin-

cipal planes. We search for a reference grid that relocates

surfaces onto the vertices, lines and planes of the reference

grid, where this is possible. The basic difficulty of comput-

ing a best-fit reference grid is that the objective function to

be minimized is not smooth, this is why we need to apply

relatively expensive algorithms. We describe two algorithms

corresponding to Eqs. 9 and 10. In the first two-step algorithm

we work with orthogonal distances between pairs of Plane–

Plane, Axis–Axis and Plane–Axis. First we determine the best

cell size, then we optimize the position of the origin. In the

second single-step algorithm the unknowns are simultane-

ously optimized. We will use weights for the minimization

by the surface areas Ai. Examples will be given at the end of

the section.

6.1. Computing a best-fit grid in two-steps

This algorithm first computes an optimal cell size, and

then sets the optimal origin. We compute aligned orthogo-

nal distances between the pairs of surface entities denoted

by {di}, i = 1, . . . , N, and assign a weight to each distance as

wi = min(Ak, Al). As before, we search for the best common

divisor of the distances and minimize the sum of remainders

as

δ(h) =
N∑

i=1

wi

h
min

({
di

h

}
, 1 −

{
di

h

})
.

Our goal is to find the minimum of δ(h) in the [hmin, hmax]

interval. It is easy to see that this function is piecewise mono-

tone, with breakpoints at numbers of the form of di/k, for cer-

tain di-s, where k is a positive integer. Therefore, we need to

search for the minimum only at these points, and we can find

this in O(N2dmax /hmin) steps, where dmax = maxi ni.

Once we have an optimal cell size h, the origin of the grid

needs to be located. A given CAD object may fully or partially

be symmetric, in other words there may exist “dominant”

symmetry planes that fully or partially restrict the position of

the origin (see next section). The most general case is when

the origin is not constrained at all, see Fig. 11. If there is one

dominant symmetry plane, we restrict the origin to slide on

that. If there are two such planes, the origin may slide along

their line of intersection. Finally, if there are three dominant

planes, as in Fig. 12, the best origin is uniquely defined. This

means that we may want to determine the position of the

origin by computing its 3, 2, 1 or 0 number of coordinates.

Let u denote any of x, y or z, then the expressions below are

independently minimized

δ(u0) =
∑

i

wi

h
min

({
ui − u0

h

}
, 1 −

{
ui − u0

h

})
. (11)

6.2. Computing a best-fit grid in a single step

Optimizing the cell size and the origin simultaneously

may yield better results than the two-step method, though

from a computational point of view this is much more de-

manding, in particular when the origin is free to set. For sim-

plicity’s sake, let us look at only the one-dimensional case by

coordinates xi; and assign weights to each entity as wi = Ai.

The unknown value of the best origin is x0, thus we minimize

the following expression:

δ(x0, h) =
∑

i

wi

h
min

({
xi − x0

h

}
, 1 −

{
xi − x0

h

})
.

It is easy to see, that when x0 is fixed, monotonicity

breaks only at h = (xi − x0)/l values. Similarly, when h is

fixed, monotonicity breaks at numbers of the form xi − kh,

where l and k are integer numbers. Consequently, when we

determine the minimum at fixed x or h, it is sufficient to
0

54 I. Kovács et al. / Graphical Models 82 (2015) 44–57
search for numbers by these formulae, i.e.,

x0 = lxi − kxj

l − k
,

h = x j − xi

l − k
.

This means

O

(
N2 maxi(xi)

hmin

)
choices altogether, and computing the function at a given

point requires O(N) steps, so the computation time will be

O(N3).

For higher dimensional cases, when 1–3 coordinates of

the origin must be determined, the solution is similar, as with

fixed h minimization can be performed for each coordinate.

Since for setting h there are O(N2max ij(xij)/hmin) choices, for

three coordinates maximum

O

(
N4

(
maxi j(xi j)

hmin

)2
)

steps are needed. Thus in the worst case when we determine

the full set of x0, y0, z0, h the algorithm is O(N5), which in-

dicates that the single step algorithm may be very expensive

for a high number of surfaces.

6.3. Constrained fitting for grids

At this point, we have a preliminary reference grid. We

select those surfaces that actually match this “hypothetical”

grid within a tolerance ε, as only these surfaces will take part

in the final constrained fitting. The normal vectors of planes

and the direction vectors of rotational surfaces have already

been aligned, so we check the reference points of the planes

and the axes whether they match the grid. For example, for a

plane with x, y or z-aligned normal we request

(ui − (u0 + k ∗ h))2 < ε,

for a rotational surface with x, y or z-aligned axis we request

(ui − (u0 + k ∗ h))2 + (vi − (v0 + l ∗ h))2 < ε,

where u and v denotes any of the x, y, z coordinates.

The final constrained fitting will be performed using an

auxiliary object with four unknowns x0, y0, z0, h in the gen-

eral case, and with constraints of the type above for each

relevant surface. Based on the above equations we can de-

fine coverage and approximation error to measure how good is

the best-fit grid. This computation also helps identifying the

complementary group of surfaces, which were likely “off” the

grid in the original design.

6.4. Test example: partial reference grid

We computed a best-fit reference grid for the Darmstadt

object (Fig. 11). The following “meaningful” distances have

been taken into consideration (here we refer to the coordi-

nates of the reference points associated with surface Si, as

was indexed earlier):

• Plane–Plane distances: z1 − z2, y3 − y4;
• Axis–Axis distances: x − x , y − y , x − x , x − x ;
5 7 5 7 5 6 6 7
• Plane–Axis distances: y3 − y5, y3 − y7, y4 − y5, y4 −
y7, z1 − z6, z2 − z6.

The coverage value of this grid is relatively low (66.82%),

as the top face, the cone, the drafted extrusion and the free-

form face do not match the grid, the approximation error for

the matching surfaces relative to the cell size is small (0.66%).

Here the origin is not constrained by any symmetry plane,

and we have freedom to shift it by any multiple of h.

6.5. Test example: reference grid with high coverage

In the second example (Fig. 12) the algorithm produced a

good grid, which is 1/6th of the full width of this prismatic

object. Looking at the faces colored dark, one can identify

the faces matching the reference grid. The coverage value

is 77.45%, the average approximation error relative to the

bounding box is 0.25%. Here the origin gets well-defined by

the three dominant symmetry planes, which drastically re-

duces the complexity of the computations.

7. Reflective symmetry planes

A very important issue in perfecting CAD models is how

to detect and enforce constraints by symmetry planes. In the

majority of cases, symmetries are only partial, however, these

must be detected and enforced, as well. Let us denote a sur-

face by si and its counterpart through a plane of symmetry

P by P(si). The measure of partial symmetry for two accurate

surface portions s1 and s2 can be computed by the overlap-

ping area, as

2Area(s1 ∩ P(s2))

Area(s1) + Area(s2)
.

In the case of full symmetry this yields 1.

In the reverse engineering context, we mostly deal with

approximate symmetries due to measured data. The counter-

parts s1 and P(s2) will not exactly fit onto each other, only

within a certain tolerance ε, and we will need a measure of

overlap by mapping the points of s1 to P(s2) and vice versa, as

will be described later.

We present the basic idea of our algorithm, but space lim-

itation prevents us to discuss every detail. The algorithm is

split into the following steps:

• Step 1: compute candidate planes between pairs of sur-

faces having acceptable measure of symmetry.
• Step 2: apply clustering to collect candidate planes, and

rank these by special weights.
• Step 3: select a best symmetry plane and its matching sur-

faces, and refit by constrained fitting.
• Step 4: repeat the procedure for the next clusters to ob-

tain further symmetry planes with coverage above a given

threshold.

7.1. Candidate planes

In order to define candidates of symmetry planes, we

pick two surfaces of the same type, including pairs of planes,

cylinders, cones, and rotational surfaces. For a pair of planes

pi and pj we define a candidate plane P(pi, pj) by selecting a

suitable bisecting plane. For a pair of rotational, cylindrical

I. Kovács et al. / Graphical Models 82 (2015) 44–57 55

Fig. 13. Full symmetry.

(a) (b)

Fig. 14. Bitmatrix: (a) symmetry of two objects; (b) self symmetry. (For in-

terpretation of the references to color in this figure legend, the reader is re-

ferred to the web version of this article).
or conical surfaces ri and rj, we take their axis lines li and lj.

If these are in the same plane π i, j, we compute a candidate

plane P(li, lj) as a halving plane between the axis lines, which

is also perpendicular to π i, j. In the current algorithm, pairs

of extruded or drafted extruded surfaces are not used to pro-

duce candidate planes, as it would require a more complex

algorithm to determine an optimal map between two point

clouds. One possible solution would be to apply ICP tech-

niques, as recommended in [12].

7.2. Clustering

By definition: two planes are considered identical by tol-

erances (ε, δ), if their normal vectors span an angle less than

ε, and the difference between their distances from the ori-

gin is less than δ. We build clusters by collecting candidate

planes, which are pairwise identical by (ε, δ). In each cluster

we sum up the primary weights that measure the extent of

overlap for each associated surface pair. Here we also follow

a cluster growing approach and process candidate planes one

by one. If one is found close to an existing cluster we insert

it, and increase the overall weight of the cluster; otherwise

we open a new one. Eventually, for each cluster we assign a

weighted sum of normals vectors, and a weighted sum of dis-

tances from the origin, and then rank the clusters by the sum

of their primary weights.

In the next phase, we assign secondary weights to

each clustered candidate plane P, that measures the “self-

symmetry” of individual surfaces that do not belong to the

generating surface pairs. These may include planar surfaces

that are (i) orthogonal to P, rotational surfaces whose axis

is (ii) contained or (iii) orthogonal to P, and extruded sur-

faces whose direction vector is (iv) contained or (v) orthog-

onal to P. As an example, take the object in Fig. 13 and the

symmetry plane P, that was generated by two circular planar

faces on the sides and lies in the x-z plane. This cluster will

have relatively small primary weights, since the area of the

corresponding face pairs is small. However, there are several

large “supporting” faces that produce significant secondary

weights. For example, the top and bottom planar faces are or-

thogonal to P, the axes of the vertical cylinders are contained
in P, the direction of the side extrusions in the front and the

back are contained in P, and so on.

In fact, we can add further tertiary weights to support a

candidate plane by pairs of surface regions that have been

discarded earlier. These include pairs of rotational surfaces

with identical axes, or pairs of extruded surfaces with identi-

cal directions, that are perpendicular to the candidate plane.

Such examples can also be found in Fig. 13: take the two sym-

metric horizontal cylindrical holes or the two symmetric ex-

truded regions on the top.

The final ranking of the clusters will be computed by

the sum of all associated weights. Each weight represents

an overlap measure between a pair of faces or a mapping

of a face onto itself. We need to emphasize that only sur-

face pairs with large overlaps are considered; non-symmetric

or weakly symmetric surface pairs are discarded. The same

holds for self-symmetry. In the next section we describe how

an approximate overlap measure can be computed using bit-

matrices.

7.3. Computing an approximate measure of symmetry

Given a candidate symmetry plane and two surface

regions, we need a computationally efficient method to

determine the measure of approximate symmetry, and de-

cide whether the given pair of surfaces should contribute to

the current symmetry plane or not. All surfaces we are deal-

ing with can be parameterized by a regular grid. For extruded

and rotational surfaces we can take the grid of the curva-

ture lines, for free-form surfaces the constant parameter lines

provide such a grid. Having a given resolution, we can create

a discretized matrix representation of each surface region by

taking those cells, whose center points lie inside the bound-

aries of a given surface region. This provides an approximate

area for the region and also facilitates overlap computation,

which is based on mapping the center points of the cells from

the first surface region to the second. If the mapped point

is within tolerance to the second surface, this cell will be

marked as contribution to the symmetry, and similarly we

take the center points from the second surface and measure

their approximate distance from the first one. This simple

approach is shown in Fig. 14(a), where correspondence be-

tween two regions is shown. The cells that are found mutu-

ally symmetric are colored red, while the cells that fall out

due to lack of symmetry are colored green.

56 I. Kovács et al. / Graphical Models 82 (2015) 44–57

Fig. 15. Approximate symmetry test. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this

article).

Fig. 16. Two partial planes of symmetry. (For interpretation of the refer-

ences to color in this figure legend, the reader is referred to the web version

of this article).
The same algorithm can be applied for computing the

self-symmetry measure of a single surface region related to

a given candidate plane. Here the center points of the cells

are mapped onto the surface itself and the approximate dis-

tances are computed accordingly. Such an example can be

seen in Fig. 14(b) using the same coloring of the cells as be-

fore.

This approximation, of course, is very rough and depends

on the resolution of the matrix, but it is computationally effi-

cient, and does select those relatively large surface pairs that

must be considered when calculating the symmetry weights

while ranking the clusters.

7.4. Constrained fitting for symmetry planes

In the previous phases of the algorithm we ranked the

candidate planes. Let us take the strongest and collect

those surface elements that were found partially and ap-

proximately symmetric. Now we are ready for constrained

fitting. The best symmetry plane is represented as an aux-

iliary object with a reference point p0 and a normal vector

n0. Without enumerating all possible constraints for the

different types of surface types, we remark that these are

formulated related to the above auxiliary element. For planes

we use reference points pi, normal vectors ni, and optionally

distances from the symmetry plane di. For rotational surfaces

reference points on the axes oi, directions vi and optionally

distances di are needed. For extruded and drafted extruded

surfaces we will need direction vectors vi. All important

constraints for determining the best symmetry plane can

be easily formulated using the above entities. The most

important constraint are the following:

(i) planar surface pair is symmetric,

(ii) single planar surface is orthogonal to symmetry plane,

(iii) cylindrical (rotational) surface pair is symmetric,

(iv) axis of a single cylindrical (rotational) surface is con-

tained in the symmetry plane,

(v) axis of a single cylindrical (rotational) surface is or-

thogonal to the symmetry plane,

(vi) (drafted) extruded surface pair is symmetric,

(vii) direction of (drafted) extruded surface pair is orthog-

onal to the symmetry plane, etc.

Once constrained fitting is performed, an approximate

measure of symmetry for the relevant surface set and a related

approximation error for the corresponding data points can be

determined.

7.5. Test example: single symmetry plane

We have already analyzed the object in Fig. 13 in the pre-

vious paragraphs. This plane is characterized by a relatively

high value of symmetry. This object also demonstrates that in

order to guarantee perfect symmetry for individual surfaces

with profile curves special operations are needed. Symme-

try can be guaranteed, if we mirror the points on the left to

the right side, and vice versa, then the duplicated point set

will be symmetric, and constrained fitting also produces per-

fectly symmetric profiles. For example, such a profile curve is

generated for the extruded surfaces in the front and the back

parts. Similar operations are needed when a common profile
for a pair of symmetric surfaces needed to be created; for ex-

ample, the final profile curve of the two extruded regions on

the top must be generated based on a united point set. Sym-

metric free-form surfaces can also be generated by this prin-

ciple, i.e., mirroring all the related points through the given

symmetry plane and uniting these with the original points

will yield a symmetric data set and thus a symmetric surface

approximation.

7.6. Test example: multiple symmetry planes

This object is a good example of strong partial symme-

tries, see Fig. 16. There are two such symmetry planes, the

green one is symmetric by 86.74%, the blue one by 79.52%.

The large planar faces are strongly symmetric, but (i) there is

an extruded through-hole in the back side, facing two pairs of

concentric cylinders in the front, and (ii) there are extruded

I. Kovács et al. / Graphical Models 82 (2015) 44–57 57
surfaces at the right corner of the top face, facing chamfered

faces with two small cylindrical holes on the left side. These

explain the values of partial symmetry. The numerical over-

lap computation for the top face is illustrated in Fig. 15. It

can be observed that the chamfered faces on the left and the

corner extrusions on the right violate symmetry, but all the

remaining parts (colored in red) are found symmetric.

8. Conclusion

A crucial issue in reverse engineering is to perfect objects

that need to be reconstructed from measured data. We have

presented various techniques that reset the parameters of in-

dependently fitted primary surfaces by applying constrained

fitting, now for collections of surfaces. This approach is based

on detecting “hypothetical”—local and global—constraints,

that numerically qualify as relevant surfaces to be kept for

computing best-fit structures by related constraints. For-

merly developed algorithms have been extended for (i) set-

ting automatically appropriate local constraint-sets; (ii) com-

puting optimal coordinate systems for the whole object and

for not-yet aligned subparts; (iii) computing reference grids

in order to optimally snap dimensions, and (iv) determining

symmetry planes for linking fully, or partially symmetric sur-

faces in a united system.

The algorithms have been implemented in a test program,

which produced the pictures and the numerical results in the

paper. For creating 3D test objects, we have used simulated

and scanned data sets. These algorithms are fast (apart from

the single-step grid algorithm), and produce results in a few

seconds.

Future work is going to be directed towards generat-

ing common profile curves for constrained entities, handling

general sweeps and lofted surfaces and adding constraints

related to free-form geometry. Computational efficiency for

large objects is also an important area of interest; we have

already started to investigate an enhanced approach, where

at the beginning only large faces are processed, and then

smaller faces are added in a hierarchical manner.

Acknowledgment

Authors would like to thank György Karikó for discussing

important algorithmic issues and participating in the devel-
opment of the constrained fitting test program. Thanks are

due to the anonymous reviewers for constructive comments.

This research is supported by the Hungarian Scientific Re-

search Fund (OTKA No. 101845).

References

[1] P. Benkő, G. Kós, T. Várady, L. Andor, R. Martin, Constrained fitting in

reverse engineering, Comput. Aided Geometric Des. 19 (3) (2002) 173–
205.

[2] T. Várady, R. Martin, Reverse engineering, Chapter 26, in: G. Farin,
J. Hoschek, M.-S. Kim (Eds.), Handbook of Computer Aided Geometric

Design, 2002, pp. 651–681.
[3] P. Marks, Capturing a competitive edge through digital shape sam-

pling & processing (DSSP), SME Blue Book Ser., Society of Manu-

facturing Engineers (2005) (http://www.ewp.rpi.edu/hartford/users/
papers/engr/ernesto/mannan/EP/References/DSSPBlueBook.pdf).

[4] N.J. Mitra, M. Pauly, M. Wand, D. Ceylan, Symmetry in 3d geometry:
Extraction and applications, Comput. Graph. Forum 32 (6) (2013) 1–

23.
[5] J.D. Wolter, T.C. Woo, R.A. Volz, Optimal algorithms for symmetry de-

tection in two and three dimensions, Vis. Comput. 1 (1) (1985) 37–48.

[6] H. Zabrodsky, S. Peleg, D. Avnir, Symmetry as a continuous feature, Pat-
tern Anal. Mach. Intell. IEEE Trans. 17 (12) (1995) 1154–1166.

[7] J. Podolak, P. Shilane, A. Golovinskiy, S. Rusinkiewicz, T. Funkhouser, A
planar-reflective symmetry transform for 3d shapes, ACM Trans. Graph.

(TOG) 25 (3) (2006) 549–559.
[8] S.J. Tate, G.E. Jared, Recognising symmetry in solid models, Comput.

Aided Des. 35 (7) (2003) 673–692.

[9] K. Li, G. Foucault, J.-C. Léon, M. Trlin, Fast global and partial reflec-
tive symmetry analyses using boundary surfaces of mechanical com-

ponents, Comput. Aided Des. 53 (2014) 70–89.
[10] R. Schnabel, R. Wahl, R. Klein, Efficient ransac for point-cloud shape

detection, Comput. Graph. Forum 26 (2) (2007) 214–226.
[11] Y. Li, X. Wu, Y. Chrysathou, A. Sharf, D. Cohen-Or, N.J. Mitra, Glob-

fit: Consistently fitting primitives by discovering global relations, ACM
Trans. Graph. (TOG) 30 (4) (2011) 52.

[12] Y. Ke, S. Fan, W. Zhu, A. Li, F. Liu, X. Shi, Feature-based reverse modeling

strategies, Comput. Aided Des. 38 (5) (2006) 485–506.
[13] Y. Liu, H. Pottmann, W. Wang, Constrained 3d shape reconstruction us-

ing a combination of surface fitting and registration, Comput. Aided
Des. 38 (6) (2006) 572–583.

[14] V. Pratt, Direct least-squares fitting of algebraic surfaces, ACM SIG-
GRAPH Comput. Craph. 21 (4) (1987) 145–152.

[15] G. Lukács, R. Martin, D. Marshall, Faithful least-squares fitting of

spheres, cylinders, cones and tori for reliable segmentation, in: Com-
puter Vision ECCV’98, Springer, 1998, pp. 671–686.

[16] F.C. Langbein, A.D. Marshall, R.R. Martin, Choosing consistent con-
straints for beautification of reverse engineered geometric models,

Comput. Aided Des. 36 (3) (2004) 261–278.
[17] M. Li, F.C. Langbein, R.R. Martin, Detecting approximate symmetries of

discrete point subsets, Comput. Aided Des. 40 (1) (2008) 76–93.

[18] M. Li, F.C. Langbein, R.R. Martin, Detecting design intent in approximate
cad models using symmetry, Comput. Aided Des. 42 (3) (2010) 183–

201.

http://dx.doi.org/10.13039/501100003549
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0001
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0001
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0001
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0001
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0001
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0001
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0002
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0002
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0002
http://www.ewp.rpi.edu/hartford/users/papers/engr/ernesto/mannan/EP/References/DSSPBlueBook.pdf
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0004
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0004
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0004
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0004
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0004
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0005
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0005
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0005
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0005
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0006
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0006
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0006
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0006
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0007
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0007
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0007
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0007
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0007
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0007
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0008
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0008
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0008
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0009
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0009
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0009
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0009
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0009
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0010
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0010
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0010
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0010
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0011
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0011
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0011
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0011
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0011
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0011
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0011
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0012
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0012
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0012
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0012
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0012
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0012
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0012
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0013
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0013
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0013
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0013
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0014
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0014
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0015
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0015
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0015
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0015
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0016
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0016
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0016
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0016
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0017
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0017
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0017
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0017
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0018
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0018
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0018
http://refhub.elsevier.com/S1524-0703(15)00021-1/sbref0018

	Applying geometric constraints for perfecting CAD models in reverse engineering
	1 Introduction
	2 Related work
	3 Basic concept of constrained fitting
	3.1 Constraints for a smooth profile curve
	3.2 The numerical method
	3.3 Auxiliary objects
	3.4 Test example: smooth profile curve

	4 Automatic detection of local constraints
	4.1 Test example: a selected constraint set

	5 Best aligned coordinate systems
	5.1 The algorithm
	5.2 Constrained fitting for the best alignment
	5.3 Test example: enhanced coordinate system
	5.4 Test example: approximation error reduced
	5.5 Test example: almost full alignment

	6 Snapping and the best fit reference grid
	6.1 Computing a best-fit grid in two-steps
	6.2 Computing a best-fit grid in a single step
	6.3 Constrained fitting for grids
	6.4 Test example: partial reference grid
	6.5 Test example: reference grid with high coverage

	7 Reflective symmetry planes
	7.1 Candidate planes
	7.2 Clustering
	7.3 Computing an approximate measure of symmetry
	7.4 Constrained fitting for symmetry planes
	7.5 Test example: single symmetry plane
	7.6 Test example: multiple symmetry planes

	8 Conclusion
	 Acknowledgment
	 References

