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Abstract

Proximity curves represent a family of curves that are associated with a control point based parametric
curve. Proximity curves continuously sweep from the given curve towards its control polygon depending
on a proximity value. A new representation, the proximity Bézier (or shortly P-Bézier) curves have
been introduced in a recent paper; the basis functions are calculated by a simple algebra with an inter-
esting geometric interpretation. They inherit many features of ordinary Bézier curves including C∞

continuity in the interior and simple formulae to constrain Cn connections at the end points.
In this article we focus on the approximation properties of this new representation. Our experiments
show that the P-Bézier basis is much more suitable for approximation than the standard Bernstein
basis; enhancements include a natural placement for the control points and numerical stability for
least-squares fitting.

1. Introduction

In geometric modelling the great majority of free-
form curves and surfaces are defined by control point
based representations. The control points are associ-
ated with a set of basis functions, that fundamentally
determine the versatility of shape editing, the math-
ematical properties of the scheme and the computa-
tional aspects of related algorithms. While the most
widely applied Bézier and B-spline schemes possess a
well-established theory with a long list of attractive
features, it is a recurring research topic to develop
new schemes where certain improvements are possible.
Proximity curves represent such an approach. A fam-
ily of curves is constructed that are associated with a
given control point based parametric curve, and sweep
continuously from the curve to its control polygon.
The location of the intermediate curves depends on a
proximity parameter.

A new representation, the proximity Bézier – or
shortly P-Bézier – curve has been introduced in a re-
cent paper8. It was developed to overcome some de-
ficiencies of ordinary Bézier curves and offer further
flexibility for design. It is well-known that when the

degree of a Bézier curve is raised, the weight of the re-
lated basis functions decreases, and the design effect
of the control point gets weaker. With other words,
high degree Bézier curves loosely approximate the con-
trol polygons, and large displacements of the control
points change the shape only to a small extent. An
example is shown in Figure 1(a), where a Bézier curve
defined by seven control points (colored black) poorly
reproduces the shape of the defining polygon. Now
having P-Bézier curves we can adjust the vicinity of
the curves to the control polygon and simultaneously
set how strongly the control points should affect the
shape. In Figure 1(b) the set of basis functions with
different proximity values are shown. Note, that these
basis function remain C∞ continuous just their “steep-
ness” over the parametric interval is distributed in dif-
ferent ways.

Various interesting properties and algorithms were
presented in our recent paper8; here we are going to
focus on the problem of approximating data points by
means P-Bézier curves. After referring to a few impor-
tant publications, we will present the basic construc-
tion, in particular the creation of the basis functions.
These can be plugged into a standard least-squares
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Figure 1: P-Bézier curves and basis functions with var-
ious proximity values. The initial Bézier curve and its
Bernstein basis functions are colored black.

approximation algorithm, however, proximity opens
up new issues, such as the placement of the control
points and numerical stability, as will be discussed and
demonstrated in the last part of the paper.

2. Previous work

There are many papers in the CAGD literature that
attempt to extend and enhance the most popular
representations of Bézier and B-spline curves and
surfaces4. Significant efforts have been made to offer
additional shape control and supplement control point
based design1, 2, 10. This problem was intensively re-
searched in the late seventies and eighties, neverthe-
less, some interesting papers were published in the last
decade, as well11, 3, 6, 12.

Our first proximity curve scheme – called P-curves7
– offers global shape control, ensures C∞ continuity
and G1 endpoint interpolation. The basis functions
were constructed by means of generalized barycentric
coordinates.5

The new family of P-Bézier and P-B-spline curves
takes a different approach8: the basis functions are
calculated by a much simpler algebra with a special
geometric interpretation. We can reproduce standard
curve representations and add proximity control. We

can also easily maintain Cn end constraints. An in-
teresting feature of proximity curves relates to the in-
sertion of new control points: while in the standard
schemes a new degree of freedom leads to reposition-
ing the existing control points, in our case the new
control points are always placed on some chord of the
control polygon.

Approximation or interpolation with polynomials
can be numerically unstable. One can get better re-
sults by using the Bernstein basis instead of the mono-
mial basis.9 Another possible workaround here is to
use splines instead of polynomials.4; although these
are more stable we loose high-degree continuity. With
P-Bézier curves, the approximation is much more sta-
ble and the basis preserves C∞ continuity.

3. P-Bézier curves

P-Bézier curves represent a family of curves being as-
sociated with an ordinary Bézier curve and a proxim-
ity parameter γ. For γ = 1 the Bézier curve is fully
reproduced, for γ = 0 the curve is snapped onto the
control polygon and for other values 0 < γ < 1 inter-
mediate curves are obtained. Note that γ is inversely
related to proximity, i.e. for smaller values of γ the
curve is dragged closer to the control polygon.

The equation of a P-Bézier curve can be formulated
as

cγ(t) =

n∑
i=0

PiM
n,γ
i (t), (1)

whereMn,γ
0 (t), . . . ,Mn,γ

n (t) are special basis functions
that depend on γ. (From now on we will omit the
superscript n, and use only Mγ

i .)

We will use a sequence of footpoints 0 = u0 < u1 <
. . . < un = 1, that denote the parametric image of
the control points. The ui-s are set to i/n, however,
setting these in a non-uniform manner is also possible.
Footpoints actually indicate the maximum position of
the basis functions.

We are going to construct the Mγ
i (t)-s in a special

manner by means of a particular set of variables rγi (t)
and related weighting functions fi(t):

rγi = rγi (t) =

√
(ui − t)2 + γfi(t). (2)

The fi-s are positive, real functions, and will have a
crucial role to satisfy our constraints.
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The general form of our basis functions are given as

Mγ
0 (t) =

1

2
+

∆r0
2∆u0

,

Mγ
i (t) =

∆ri
2∆ui

− ∆ri−1

2∆ui−1
,

Mγ
n (t) =

1

2
− ∆rn−1

2∆un−1
,

(3)

where ∆ri = rγi+1 − r
γ
i and ∆ui = ui+1 − ui.

It is easy to prove that the control polygon is repro-
duced for γ = 0, since ri(t) = |ui − t|, and it is easy
to see that the basis Mγ

i (t) has the partition of unity
property. We are going to reproduce the Bernstein ba-
sis, so we seek weighting functions fi(t) such that for
γ = 1,

M1
i (t) = Bni (t) =

(
n

i

)
ti(1− t)n−i. (4)

The solution of this system of equations yield the
r1i functions given below:

r1i (t) = t− i

n
+

2

n

i−1∑
j=0

(i− j)Bj(t). (5)

Using these we can express the fi-s as

fi(t) =

(
t− i

n
+

2

n

i−1∑
j=0

(i− j)Bj(t)

)2

−
(
i

n
− t
)2

,

(6)
and derive rγi -s for arbitrary γ as

rγi (t) =

√(
i

n
− t
)2

+ γfi(t). (7)

Observe that the fi-s are polynomials of degree 2n,
so the rγi -s are given as square roots of degree 2n poly-
nomials.

To sum it up, this construction ensures that using
these weighting functions, the related rγi -s and Mγ

i -
s reproduce the Bernstein basis for γ = 1. For 0 <
γ < 1 the basis functions are positive, thus the P-
Bézier curves represent a convex combination scheme
inheriting important properties of Bézier curves. Since
the fi-s and the rγi -s are C

∞ continuous, the P-Bézier
curves have C∞ continuity, as well.

4. Least-squares approximation

Least-squares approximation is a well-known tech-
nique. We wish to determine a parametric curve
c(t), that approximates a sequence of data points
Q0, . . . ,Qm with assigned parameter values tj . We
minimize the total squared distance error δ, and calcu-
late the unknown control points of the curve denoted

by P0, . . . ,Pn. For P-Bézier curves with proximity pa-
rameter γ we obtain

δ =

m∑
j=0

‖cγ(tj)−Qj‖2 =

=

m∑
j=0

∥∥∥∥∥
n∑
i=0

PiM
n,γ
i (tj)−Qj

∥∥∥∥∥
2

→ min,

(8)

that leads to a linear system of equations. This can be
written in matrix form as

M>MP = M>Q (9)

where P is the vector of the control points, Q is the
vector of data points and M is the collocation matrix,
i.e.

Mi,j = Mn,γ
i (tj). (10)

By solving this linear system, we obtain the unknown
Pi-s.

The variance of the control points is highly corre-
lated with the norm of (M>M)−1; and we will analyse
these values later in our test examples.

4.1. Parameter correction

In order to get better approximation it is advised to
optimize the tj parameters, too. This can be done by
an iterative algorithm to tweak each parameter in gra-
dient direction, and then recalculate the best-fit con-
trol points.

More precisely, let the new t′j = tj +∆tj , where

∆tj =
〈Qj − c(tj), ċ(tj)〉

‖ċ(tj)‖2
. (11)

4.2. Proximity correction

With a similar logic we can optimize γ, as well, i.e.
find the best possible proximity value for a given set
of data points. Let γ′ = γ +∆γ, where

∆γ =
1

m+ 1

m∑
j=0

〈Qj − c(tj), d
dγ
c(tj)〉∥∥∥ d

dγ
c(tj)

∥∥∥2 . (12)

We have achieved the most accurate results when
we optimized both γ and tj , iteratively. So first a tj
parameter correction was performed, then the control
points were recalculated, then a γ correction, then re-
calculating the control points, etc.

5. Numerical stability

As it is well-known, the numerical stability of an ap-
proximation or interpolation system of equations de-
pends on the properities of the collocation matrix. Ex-
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Figure 2: The condition number as the function of γ
for n = 10. We can see a sharp drop around γ = 1.

perimental results show that if we change the Bern-
stein basis according to our proximity method, the
approximation becomes much more stable, even for
a small tweak in the proximity (for example using
γ = 0.98 instead of 1). In fact, considering the con-
dition number as a function of γ, there is a sharp drop
in the vicinity of 1. See Figure 2.

Our main interest was the spectrum of the uniform
collocation matrix,

Mi,j = Mn,γ
i (tj), (13)

where tj = j
n
. First of all, the largest eigenvalue of this

matrix is always 1. For γ = 1 – where the Bernstein
basis is reproduced – the smallest eigenvalue of the
matrix is

εn =
(n− 1)!

nn−1
≈
√

2πn3

en

which is exponentially small as n grows. Since the con-
dition number of a matrix can be expressed as the ratio
of the largest and the smallest eigenvalue, the condi-
tion number of our matrix is the reciprocal value of
the smallest eigenvalue, which is exponentially large
as n grows.

However, for γ = 0 the collocation matrix is just the
identity matrix, so all of its eigenvalues are 1. Heuris-
tically what happens here is that the smallest eigen-
value goes from the really small value εn to 1, as γ goes
from 1 to 0. So if we think of the smallest eigenvalue
as a function of γ, this function is more or less linear
around γ = 1. Therefore, the smallest eigenvalue can
be expressed (approximately) as

cn
1− γ − εn

for some cn constant. Since εn is small, this function
behaves around 1 as the function 1/x around 0, can
explains the sharp drop in the condition number.

Figure 3: Approximation by P-Bézier curves using var-
ious proximity values.

6. Test examples

We demonstrate the benefits of using P-Bézier curves
for approximation by means of two simple examples.
Parameter correction has been applied.

6.1. Example 1

In the first example we have chosen data points with a
relatively high curvature oscillation (see Figure 3). It
can be seen that the least-squares fit by an ordinary,
low-degree Bézier curve produces extreme, wiggling
control points. The control points of P-Bézier curves
with high proximity still wiggle. But when we further
decrease the proximity value (see Table 1) the best-fit
control polygon moves closer to the sample points, and
this is favourable for geometric design and the forth-
coming computations. In this example the accuracy of
the approximation has improved and the matrix norm
decreased.
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Curve Error ‖(M>M)−1‖

Bézier (n = 4) 1.9% 1.35

P-Bézier (n = 4, γ = 0.8) 1.83% 0.68

P-Bézier (n = 4, γ = 0.6) 1.41% 0.42

P-Bézier (n = 4, γ = 0.4) 0.86% 0.23

P-Bézier (n = 4, γ = 0.2) 0.70% 0.13

Table 1: Numerical results of approximations in Ex-
ample 1.

6.2. Example 2

In this example we have sampled a more complex
curve and superimposed noise. As before, the data
points were approximated by a Bézier and several P-
Bézier curves, see Figure 4 and Table 2.

We can see, that in the case of Bézier curves, the
matrix norm is extremely high, due to the fact that the
Bernstein-Vandermonde matrix is ill-conditioned.9 It
is a surprising observation in Table 2 that the norm is
exponentially falling as we linearly decrease the prox-
imity parameter. This indicates that our matrices are
numerically more stable, and the variation of the con-
trol points is much more smaller. When γ is close to
one, we get a very similar basis and shape, but with
significantly better numerical stability.

Figure 4(a) shows that the fitted Bézier curve is not
appropriate for further editing, since the control points
strongly oscillate and their placement is not intuitive,
however, with a decreasing γ much better curve can-
didates are obtained. Note, that as we decrease prox-
imity the approximation error starts increasing below
a certain value. This is expected, as having “too rigid”
basis functions will destroy the approximating power;
so the question arises, for a given point set which prox-
imity curve is the best. As was written in Section 4.2,
the optimal value can be iteratively determined. For
example, for the curve in Figure 3 the most accurate
curve can be obtained at proximity value γ = 0.85.

7. Conclusion and future work

Recently we have proposed a new concept for paramet-
ric curve and surface representation8, where proximity
between a given shape and its control structure can be
explicitly controlled. The scheme is capable to repro-
duce Bézier curves and surfaces, while it offers addi-
tional flexibility for geometric design, as well. In our
current article we have examined the benefits of ap-
plying P-Bézier curves for approximating data points

(a)

(b)

(c)

Figure 4: Curve approximations in Example 2,
(a) Bézier, (b) P-Bézier (γ = 0.8), (c) P-Bézier (γ =
0.6).
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Curve Error ‖(M>M)−1‖

Bézier (n = 12) 0.38% 242 312.0

P-Bézier (n = 12, γ = 0.8) 0.61% 308.2

P-Bézier (n = 12, γ = 0.6) 0.92% 43.8

P-Bézier (n = 12, γ = 0.4) 1.24% 14.1

Table 2: Numerical results of approximations in Ex-
ample 2.

and demonstrated the efficiency of the scheme by a
few examples.
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