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Abstract
Mesh parametrization is an important topic in computer graphics and 3D geometric modelling. Methods differ in
how the distortion of the parameterized mesh is defined and what sort of optimization methods are applied to map
the mesh into the domain in a computationally efficient manner. There exist several emerging applications where
in addition to minimizing the distortion, we wish to prescribe the mapping of a few selected feature curves and
feature regions, and their relationship. We will evaluate and compare existing methods focusing on their capability
of enforcing various geometric constraints. Then we introduce two new algorithms that are suitable to satisfy
these demands. The first is an extension of the As-Rigid-As-Possible approach, where we perform optimization
and simultaneously maintain constraints. The second method is based on an iterative deformation of an existing
mapping until the prescribed constraints get satisfied. Several examples illustrate our approaches comparing
mappings without and with constraints.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling — triangular meshes, parameterization, constraints

1. Introduction

Parameterization, or flattening of 3D triangle meshes is a
fundamental task in computer graphics and geometry with
applications including, but not limited to: texturing, remesh-
ing, surface fitting and mesh repair. The problem, due to its
importance and inherent difficulty has been a topic of intense
research, which continues to this day, as well.

In mesh parameterization our goal is to map a triangle
mesh embedded in 3D to the plane, i.e. compute a pair of
coordinates (usually denoted by u and v) for each point on
the mesh. For surfaces with disc topology, this mapping can
be assumed continuous and piecewise-affine, which means
that in practice it is sufficient to determine the coordinates
of the mesh vertices. Restricted to a triangle, a parameteri-
zation is simply an affine mapping, which can be represented
in local coordinates by a 2× 2 matrix corresponding to the
Jacobian of the function, see Figure 2. The distortion of the
parameterization is quantified by considering these Jacobian
matrices, which depend linearly on the vertex coordinates.24

Up until now, the research community has been mainly
concerned with minimizing the distortion of the parameter-
ization. A huge variety of distortion measures have been
proposed along with efficient algorithms for their minimiza-

tion. Nevertheless, there exist practical applications, where
the demand to preserve and enforce certain geometric con-
straints is considered even more important than low geomet-
ric distortion. A large amount of work has concentrated on
constraints involving only discrete vertex positions11, 14 and
constant coordinate lines,5, 20 mostly in the context of tex-
ture mapping and quadrilateral remeshing, respectively.

In this paper we consider a more general class of high-
level parameterization constraints that define how certain en-
tities on the mesh are mapped to the domain. Some important
examples of such geometric constraints are:

(C1) A sequence of edges is to be mapped to a line.
(C2) Vertices of a closed sequence of edges are to lie on a

circle.
(C3) Angles between certain edges are prescribed, includ-

ing orthogonality or parallelism.
(C4) A feature curve is to preserve its shape.
(C5) A planar or developable region is to preserve its shape.

To our knowledge - despite the vast amount of published
research on parameterization - these constraints have not yet
considered in such generality; and we are aware of only a
few isolated attempts to enforce certain subsets of them.

Hereinafter we assume that the feature curves and the
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Figure 1: Results for an automotive part - (a): Model with constraints (green curve is to be mapped to a line, cyan curve is a
planar curve and must preserve its shape, (b): Unconstrained ARAP parameterization, (c): Constrained ARAP parameterization.

boundaries of the features regions are bounded by polylines
lying on the mesh. These polylines may not necessarily run
on the edges of the triangulation; in these cases a preprocess-
ing phase is performed that splits the triangles involved and
embed related edges into the mesh structure.

The paper is structured as follows. First we give an
overview of the relevant literature (section 2), then analyze
the aforementioned geometric constraints, with the aim of
reducing them to elementary relations between mesh ele-
ments (section 3). Next, we evaluate known parameteriza-
tion methods according to their potential, regarding the en-
forcement of geometric constraints (section 4). Our main
contribution is presented in section 5, where we propose an
extension to the As-Rigid-As-Possible approach, along with
a novel initialization scheme. In section 6, we present an-
other method to enforce geometric constraints on an already
computed parameterization, by deforming the planar mesh
iteratively.

2. Previous Work

Mesh parameterization has a vast and diverse literature, here
we only refer to the comprehensive surveys24, 25 and the ref-
erences therein.

The majority of commonly used parameterization meth-
ods aims at angle preservation, i.e. they compute an op-
timized conformal mapping. This can be done by mini-
mizing (typically quadratic) energies involving vertex posi-
tions,10, 15 angles23, 30 or edge lengths.2, 9, 19, 27

More general distortion measures typically necessitate

computationally expensive non-linear optimization. A no-
table exception is the application of the As-Rigid-As-
Possible mesh deformation algorithm26 to mesh parameter-
ization,17 which computes an optimized isometric mapping
using an efficient iterative procedure.

We know about only a few, isolated works in the param-
eterization literature that consider some kinds of geometric
constraints. Bennis et al.4 and Azariadis et al.1 investigate
the problem of preserving the shape (geodesic curvature) of
feature curves. Wang et al.29 and Igarashi et al.12 give meth-
ods that preserve the length of curves in the context of cloth
and garment design. Chen et al.16 preserve of shape of fea-
ture curves in a finite element simulation of elastic flatten-
ing. Valet and Levy28 extends the ABF algorithm to handle
geometric constraints such as (C1).

Although geometric constraints are relatively new to the
subfield of mesh parameterization, they have been thor-
oughly investigated and applied in geometric modeling.
The enforcement of geometric constraints, known as con-
strained modeling, is a quintessential part of the majority
of computer-aided design systems. Constrained modeling
has a very voluminous literature, and is a topic of ongo-
ing research; we refer to the survey13 and the references
therein. An important difference between our approach and
traditional constrained modeling techniques is that we work
with unorganized triangle meshes, not the organized mod-
els made up of larger scale geometric primitives common in
CAD-systems. The constrained fitting problem,3 arising in
the reverse engineering of CAD-models, is another related
research field.
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Figure 2: Illustration of mesh parameterization. The parameterization is defined by the vertex coordinates and is a collection of
affine functions (JT ), mapping each triangle from a reference position (in local coordinate system X−Y ) to its final position in
the u− v plane.

More closely related is the actively developing field of
constrained mesh deformation, see the recent survey18 and
the references therein. Our approach is novel in the sense
that some of the features we are considering are not required
to be present in the original model in the desired form. One
recent work, close to ours in spirit, is that of Bouaziz et al.,6

where certain kinds of geometric constraints are enforced
during the deformation process by a generalization of the
local-global algorithm for the minimization of the ARAP en-
ergy:26 first, they fit each constrained subset independently
with the required shape, then merge these mesh elements to-
gether in a global optimization step.

3. Analysis of geometric constraints

Our aim is to reduce the semantic high-level constraints
(C1)-(C5) mentioned in section 1, to low-level constraints
involving typical optimization variables such as positions or
angles. Constraints such as (C1), and (C3) can be decom-
posed immediately into a set of requirements involving an-
gles between certain edges of the mesh. To do the same for
(C2) and (C4) we will need some non-trivial arguments. For
(C2) we require that a closed sequence of edges shall map
to a closed polyline with a circumscribed circle, i.e. a cyclic
polygon.

Assume that we have a closed loop made out of N edges
on the mesh, with edge lengths l0, l1, . . . , lN−1. Now imagine
that in the parameterization domain, said vertices lie on a cir-
cle, and each of the edges keeps its length or gets scaled by
the same factor. For a cyclic polygon the side lengths divide
the length of the whole polygon in the same way as the re-
spective sector angles divide 2π. Also observe that the trian-
gle corresponding to each sector is equilateral. Then, given
two neighboring edges li and li+1 (see Figure 3):

αi

αi+1

βi+1

βi+1

βi

βi
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Figure 3: Notations for the circle constraints.

li + li+1

∑
N−1
i=0 li

=
αi +αi+1

2π

βi +βi+1 = π− αi +αi+1
2

Substituting the former equation into the latter, we get the
following for the interior angle between the edges:

βi +βi+1 = π

(
1− li + li+1

∑
N−1
i=0 li

)
.

If the loop is actually a hole loop (interior boundary) of a
multiply connected surface, we take the conjugate of these
angles. We have made no assumption about the coplanarity
of the edges, as for any set of edge lengths (that is possible
on meshes), there exists a unique cyclic polygon.21

For (C4), i.e. for planar feature curves, the situation is triv-
ial if the edges are exactly coplanar. In other cases, we fit a
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plane to the vertices, then project the vertices to the plane
spanned by them for the angle calculations.

Constraint (C5) usually requires special care, in a way
that, as we will see later, depends on the employed parame-
terization method.

In summary, all of the constraints we have been consid-
ering can be reduced to some combination of the following
two kinds of low-level constraints:

• Two edges shall span a prescribed angle and - excluding
(C1) and (C3) - their length ratio shall be unchanged.
• A triangle shall keep its shape, i.e. its angles and/or edge

lengths.

4. Evaluation of known parameterization methods

Based on the results of the previous section, we can easily
add geometric constraints to any parameterization method
optimizing directly for vertex positions in the parameter
plane, such as DNCP10 or LSCM.15 When we require that
two edges (whether they share vertex in the mesh or not)
shall span an angle in the parameterization, this is equiva-
lent to demanding that one edge (ekl) is the scaled and ro-
tated version of the other (ei j). The scaling can be arbitrary,
but the most natural choice is the ratio of the edge lengths,
which results in a curve similar to their original counterparts
on the 3D mesh. Quantitatively this can be expressed as:

ul−uk =
|ekl |∣∣ei j
∣∣ (cos(ϕ)(u j−ui)− sin(ϕ)(v j− vi))

vl− vk =
|ekl |∣∣ei j
∣∣ (sin(ϕ)(u j−ui)+ cos(ϕ)(v j− vi))

where ui,vi are the coordinates of the vertex i, and ϕ is pre-
scribed angle between the edges.

The shape of triangles can be preserved exactly by requir-
ing the Cauchy-Riemann equations to be satisfied, but, for
conformal methods this has a negligible effect usually, as the
mappings have negligible angular distortion in developable
regions by default.

We omit results for these algorithms as our implementa-
tion for the DNCP method gave degenerate results in cases
involving constraints on the boundary. We conjecture that
this is a result of a conflict between the Neumann bound-
ary conditions and the constraints, but we have found no
straightforward way to remedy the problem.

Angle-based methods, such as ABF23, 30 might appear ca-
pable to enforce geometric constraints, as was already noted
by Vallet and Lévy,28 but they have a fundamental limita-
tion, namely that with the exception of (C1) and (C3), ge-
ometric constraints cannot be expressed purely in terms of
angles. For example: an N-gon has 2N− 4 degrees of free-
dom, of which we can control only N via the interior angles.

Most of the known position and angle-based methods

have a common, serious drawback: they are typically confor-
mal methods, and thus, they only strive to preserve the mesh
up to its angles, i.e. up to (local) similarity. As these methods
are agnostic to scale, they allow us no direct, tractable con-
trol (e.g. expressible via linear equations in the optimization
variables) over the metric properties of the parameterization.

We also note that almost all of the published distortion
measures can be expressed as functions of the Jacobian sin-
gular values, which might appear to give us control over the
local scale of the mapping and thus the scale of the features,
but as the singular values are in a complicated nonlinear re-
lationship with the actual optimization variables, this is not
tractable for practical problem sizes.

There exist a wide class of differential geometric meth-
ods optimizing for edge length scale factors,2, 9, 19, 27 which
might appear promising from the viewpoint of geometric
constraints. It has turned out that although these methods
seem to employ a variational principle, what they optimize
is not a distortion measure, but an integrability condition,
and their result is fundamentally unique up to the boundary
conditions. Thus adding constraints involving the mesh inte-
rior would violate the mathematical assumptions underlying
these methods and render the problem infeasible.

In summary, we conclude that the only algorithm that is
feasible of incorporating all of the constraints under consid-
eration in a computationally tractable way is the As-Rigid-
As-Possible parameterization method.

5. As-Rigid-As-Possible Parameterization with
Geometric Constraints

5.1. Baseline algorithm

The algorithm based on the iterative minimization As-Rigid-
As-Possible (ARAP) energy was first proposed by Liu et
al.17 It builds on earlier work on mesh deformation by
Sorkine and Alexa.26 The proposed distortion measure, the
ARAP energy measures, per triangle, the distance (in Frobe-
nius norm) of the parameterization (represented by a 2-by-2
Jacobian matrices in local coordinate frames) from a local
isometry, i.e. a rotation matrix:

minimize
for JT ,T∈F

∑T∈F AT ‖JT −RT ‖F

subject to RT ∈ SO(2)

where JT is the Jacobian matrix for the triangle T .

This is a highly nonlinear, non-convex problem, a lo-
cally optimal solution of which can be nonetheless computed
quite efficiently using the so-called local-global algorithm.
Notice that if we keep one term of the energy fixed, while
optimizing for the other, the problem simplifies:

• Given a fixed set of Jacobians, i.e. a parameterization, one
can compute the closest set of rotations on a per triangle
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basis using a simple closed-form formula. As this can be
done independently, even parallel for each triangle, this is
called the Local phase.
• Given a set of rotation matrices, one can fit a set of Ja-

cobians to it in a least squares sense by solving a pair of
Poisson equations for the vertex positions:

Lu = bu

Lv = bv

where L is the usual cotangent Laplacian (i.e. a weighted
vertex-vertex adjacency matrix, depending only on the
original 3D geometry), and bu (resp. bv) is the discrete
divergence for the vector field given by applying the rota-
tion matrices to the u (resp. v) coordinates (see Liu et al.
for details). This is called the Global phase.

By iterating between these two phases, one can find a local
minima of the ARAP energy, for the effective cost of a single
matrix factorization (as the coefficient matrix in the global
phase stays constant through the iterations).

5.2. Initialization of rotation matrices

The iterative algorithm described above is usually initialized
by computing a set of Jacobians, i.e. a parameterization us-
ing some other method, then proceeding with the first local
phase. This is obviously difficult if geometric constraints are
imposed, and furthermore — as it was observed by Myles
and Zorin19 — initializing the rotation matrices and pro-
ceeding with the first global step leads to significantly faster
convergence in practice. We reformulate the basic idea of
Myles and Zorin in a form more suitable to our goals, by
appealing to the analogy with vector field design.
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ω4

ω5
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K α1
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α3

α4
α5α6

α7

Figure 4: Interpretation of the ARAP initialization algo-
rithm.

For the motivation of our initialization scheme, consider
the naive way to compute a set of rotation matrices by iso-
metrically flattening the 3D mesh on a per triangle basis,
traversing a spanning tree of the faces starting from a ar-
bitrary root. Obviously, such an approach would result in a
highly non-optimal, even degenerate mapping after the sub-
sequent global iteration, as the Gaussian curvature at a vertex
is equal to the angular defect for the corresponding triangle
fan, i.e. the amount by which the fan fails to close up after

isometric flattening. This can be remedied by applying an
appropriate amount of extra rotation on each triangle during
the traversal of the spanning tree, with the aim of distribut-
ing the Gaussian curvature evenly in each triangle fan, see
Figure 4. The criterion that in each inner triangle fan the net
effect of the rotations shall counteract the Gaussian curva-
ture can be expressed as an underdetermined set of linear
equations for the rotation angles, of which we want to com-
pute the solution with the smallest `2-norm†, a standard op-
timization problem:

minimize
for ωi j , i j∈E

‖ω‖2
2

subject to dT
0 ω = K

where d0 is the vertex-edge adjacency matrix (the exterior
derivative for 0-forms7), ω is the vector of unknown rotation
values for each (dual) edge, and K is the vector of Gaussian
curvatures (for the interior vertices).

5.3. Geometric constraints

Geometric constraints must be enforced in each of the it-
erations. Observe that the actual shape and orientation of
the constrained features are determined during initialization,
they are just preserved or scaled in the subsequent local and
global phases (which is the main reason why one must ini-
tialize the rotation matrices instead of the Jacobians).

5.3.1. Initialization phase

As we have an underdetermined linear system we can add
any linear equations or split one of the existing ones.

• If two adjacent edges are required to make a prescribed
angle, for interior vertices we split the corresponding
equation, requiring that the rotations for the dual edges
between the two constrained ones result in the given align-
ment, while assigning constant zero value to the rotations
over the constrained edges, see Figure 5. For boundary
vertices we simply add an additional constraint. We have
observed that for multiply connected meshes, constraints
involving inner boundary curves might conflict with the
ones prescribing ’zero-curvature’. Thus, we omit the de-
fault constraint for hole loops in the presence of a user-
defined one.

• When two separate edges are required to span a pre-
scribed angle, we build a dual path (by simple breadth-
first search) between them and constrain the sum of ro-
tations accordingly. More precisely, refer to Figure 6: as-

† We note that this is practically equivalent to the method of Crane
et al.8 for computing a trivial connection, represented as a discrete
differential dual 1-form, i.e. a scalar function on the dual edges, that
is the closest to the canonical Levy-Civita connection of the surface,
for the purposes of vector field generation.
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sume that we have two (oriented) edges e1 and e2 con-
strained to span an angle ϕ, belonging to faces f1 and f2,
which have, as their basis vectors the (oriented) edges b1
and b2. If α and β are the angles between e1 and b1 and
e2 and b2 respectively, our constraint can be expressed
as β− α

′
= ϕ, where α

′
is the angle between b2 and

e1. Along the chosen dual path b2 is rotated with respect
to b1 by the angles dictated by the isometric flattening,
denoted by ω and by the additional unknown rotations
we apply along the traversed dual edges; thus, as vectors
transform with the inverse of coordinate transforms, these
rotations have to be subtracted from α, so in summary:
α

′
= α−∑ω and after separating the constants and the

unknowns, our constraint becomes the following:

∑
(dual path)

ωadd. = ϕ−β+α− ∑
(dual path)

ωisom..

• For the preservation of planar regions, when an edge be-
longs to two constrained faces, we consider the corre-
sponding rotation as constant zero and simply remove
them from the optimization problem. It might appear nat-
ural to do the same for the edges on the boundary of the
constrained region, but we have run into numerical stabil-
ity problems while doing so.

ω1 = 0

ω2

ω3

ω5

ω6

ω4 = 0

ϕ

Figure 5: Notations for constraints involving two adjacent
edges in ARAP. On the right we illustrate the effect of the
constraint, if the prescribed angle is ϕ = 0.
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Figure 6: Notations for constraints involving two separate
edges in ARAP.

5.3.2. Global phase

First, we recast the problem of solving the linear systems
approximating the Poisson equations as minimizations of
quadratic forms, then we enforce linear constraints by the
use of Lagrange multipliers so the optimization problem for
the u (resp. v) coordinates

minimize
for u∈RNV

uT Lu−bT
u u

subject to Cu = du

is solved via the symmetric, indefinite linear system

[
L CT

C 0

][
u
ν

]
=

[
bu
du

]
.

For edge-based constraints, we simply require that the
given edges are mapped to the plane exactly with the cor-
responding rotation matrices. The same constraints could, in
principle be used on the edges of preserved regions, but we
have found that it is numerically more stable to constrain the
Jacobian of each triangle to be equal to the corresponding
rotation.

Note that these constraints enforce isometry for said edges
or triangles, but the user has the freedom to prescribe arbi-
trary scaling factors for each feature independently. This ap-
proach is not without its drawbacks, however, examine the
task shown in Figure 1, where a planar curve constraint and
straight line mapping is prescribed. It is obvious, that it is
impossible to satisfy both constraints by mapping the bound-
ary edges isometrically. Although one could find appropriate
scaling factors heuristically, the general solution is to allow
constraints that enforce geometric properties only up to sim-
ilarity as done in position-based methods, which, however
creates a coupling between the u and v coordinates, result-
ing in a much larger linear system.

As a cotangent Laplacian is used to fit a valid parame-
terization to the rotations, the resulting map might not be
one-to-one. This could happen for a single triangle, or what
is more common in the presence of geometric constraints,
an entire region could ’spill over’ a highly curved, concave
boundary. Although there are ways to prevent such artifacts
explicitly,22 we have implemented a less expensive ad-hoc
procedure instead: if a triangle reverses its orientation, we
modify the Laplacian matrix by adding a positive weight to
the entries that correspond to said triangle, and repeat the
global phase with the updated matrix, iterating until there
are no flipped triangles. With this method we have managed
to avoid overlaps completely in all of our examples.

We have also experimented with the more refined weight-
ing scheme in,5 called local stiffening. We have found that
while this procedure might be well-suited for the prevention
of local, isolated overlaps, it fails to converge in a reasonable
time for the more expansive ’spills’ we have encountered.
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5.3.3. Local phase

To preserve constraints enforced in a preceding phase, we
simply ignore those triangles that are part of a preserved re-
gion or contain a bounded edge.

6. Enforcement of Geometric Constraints via Iterative
Deformation

Previously, we have considered extensions to various param-
eterization methods. Our next aim is to enforce geometric
constraints by the deformation of a previously created, al-
ready exisiting parameterization, i.e. a planar mesh. This can
be achieved using a two-step iterative process: first isolate
the constrained mesh elements and tweak them to the de-
sired shape, then deform the rest of the mesh accordingly.

6.1. Deforming the constrained elements

If the shape is known beforehand, such as in the case of con-
straints (C4) and (C5), we simply fit said shape to the cor-
responding parts of the parameterization via standard pro-
crustes analysis, i.e. computing the SVD of the covariance
matrix, after removing the mean of the point-sets. In the-
ory the same method could be applied to the cases (C1)
and (C2), but instead we have implemented a more robust
scheme based on the curvature flow of Crane et al.,9 which
is isometric by construction and is stable for extraordinarily
large timesteps. This allows us to perform the deformation
gradually in a natural way, enabling more refined user inter-
actions.

6.2. Deforming the parameterization

Knowing the new positions of the constrained vertices, we
can easily deform the entire 2D mesh accordingly, by apply-
ing the usual local-global ARAP iterations with the positions
of the constrained vertices treated as constants in the global
phase.

7. Results

Results with the ARAP algorithm for a variety of geomet-
ric constraints can be seen in Figure 1, Figure 7, Figure 8
and Figure 9. All results were obtained after initialization
and a single global step, with the exception of those of Fig-
ure 1 where several global iterations were necessary to re-
solve overlaps at concave regions of the boundary.

8. Conclusions and Future Work

The enforcement of geometric constraints is an emerging
new research area in the context of mesh parameteriza-
tion. We have analyzed a wide class of geometric con-
straints and evaluated existing parameterization methods ac-
cording to their capability to enforce them. We have found

that a straightforward extension of the As-Rigid-As-Possible
method is capable handling all of the constraints under con-
sideration, and it can also be used to deform an existing pa-
rameterization to satisfy geometric constraints.

In the future we would like investigate further variations
of position-based methods including algorithms based on
eigenvalue computations, find ways to optimize edge scaling
factors in an explicit way in the context of ARAP, and con-
sider more general constraints e.g. ones represented by in-
equalities or nonlinear equations. We also plan to apply our
algorithms to optimize the parameterization of data points
for fitting free-form surfaces.
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Figure 9: Results for Darmstadt model - (a): Model with constraints (green planar regions are to preserve their shape), (b):
Unconstrained ARAP parameterization, (c): Constrained ARAP parameterization.
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