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Labeled parameterization for high-quality
surface fitting?
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1 Budapest University of Technology and Economics
s.high.hopes@gmail.com

2 Budapest University of Technology and Economics
varady@iit.bme.hu

Abstract. Fitting of point clouds or triangle meshes with parametric
surfaces is a fundamental task in many applications, including the reverse
engineering of CAD models and geometric modeling with curve networks.
These applications require that the fit must adhere to tight tolerances,
should be sufficiently smooth, and should have a small amount of control
points at the same time. This necessitates a complicated, iterative fitting
algorithm, with many sensitive parameters. The initial parameterization
of the data points tends to have a drastic effect on the quality of the
fit - however, finding the optimal parameterization for the purposes of
surface fitting in a completely automatic way is still a difficult, open
problem, especially for surfaces representing trimmed patches with com-
plex geometry. Thus, the currently known automatic parameterization
methods might fail to give acceptable results for certain surfaces, forcing
us to rely on user interaction. In this paper, we consider parameteriza-
tion algorithms capable of respecting a labeling of the surface boundary
provided by the user (mapping parts of the boundary to certain sides
of the domain rectangle) - this is achieved by a variant of the As-Rigid-
As-Possible parameterization method. We compare the final fit quality
initialized with the output of our algorithm.

1 Motivation

In geometry processing applications, it is often required to fit a point cloud or a
triangle mesh with a parametric surface, e.g. a tensor-product B-spline. A well-
known example is the reverse engineering of CAD models [39], where an unor-
ganized reconstruction of the model geometry (a point cloud or a triangle mesh)
is first segmented into parts representing geometric primitives (plane, cylinder,
etc.), procedurally generated parts (sweeps, surfaces of revolution, blends, etc.)
and free-form patches; and later each part is fitted with a surface of its presumed
type. Surfaces identified as free-form are to be represented as tensor-product
B-splines, so their reconstruction naturally leads to the parametric surface fit-
ting problem. The other major application area where surface fitting might be

? This work is a reduced version of a paper to be submitted elsewhere.
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necessary is geometric modelling with curve networks - modern design meth-
ods employ n-sided surface patches (where n 6= 4, potentially) [40], requiring
a non-standard representation which must be converted to traditional 4-sided
tensor-product B-splines to ensure compatibility with common CAD/CAM soft-
ware.

Our task then is to fit a set of points with a tensor product B-spline surface.
With the number of control points fixed beforehand, this leads to a least-squares
fitting problem - in practice, however, the optimal size of the control net, i.e.
the optimal number of degrees of freedom is unknown. An additional difficulty -
rarely addressed in published research on surface fitting - is that the majority of
free-form surfaces arising in practice are best represented by trimmed patches,
meaning the surface is assumed to be only a subset of some larger, unknown
4-sided surface, see Figure 1. So, the problem one must solve involves finding
the parameter domain corresponding to the trimmed surface patch, choosing the
number of control points and computing their positions in space, while adhering
to several requirements:

– the data should be fitted with tight tolerance;
– the number of control points should be as small as possible;
– the surface should have a fair curvature distribution, without unexpected

oscillations, and must extend naturally beyond the trimming curves;
– the trimmed out area should be as small as possible.

Finding a compromise between all these requirements is highly nontrivial in
practice and the seemingly straightforward least-squares fitting procedure must
be incorporated into a complicated iterative algorithm, with numerous sensitive
parameters [43]. Given the large number and variety of published fitting algo-
rithms we make no assumptions about how the fit will be computed, instead we
aim at developing tools that could benefit any fitter.

One of the most important input parameters of any fitting algorithm is the
choice of initial parameterization, which could have a drastic effect on the surface
quality. For simple geometries one might get a sufficiently good parameterization
by simply projecting to some reference or carrier surface, such as the least-
squares plane, cylinder or even some simple parametric patch. In the case of more
complex surfaces however, such methods might not give satisfactory results and
a flattening of the mesh might be required - i.e. the vertices should be mapped
to the u − v parameter plane in an optimized way. Although the flattening of
triangle meshes is a problem with a large and rich literature, the special needs and
requirements of surface fitting have rarely been addressed before. In particular,
finding a parameterization that is ”optimal” for trimmed surface fitting in a
completely automatic manner is a hard, open problem - at the time of writing
this paper, we are not aware of any published work addressing it explicitly. As
a starting point for future research on this topic, it should be noted that the
usual objectives of mesh parameterization methods - minimizing the distortion
and aligning the isolines with the principal curvatures - are not as universally
beneficial for the purposes of free-form surface fitting as they tend to for those
of other applications, such as texturing and quadrilateral remeshing. We do not
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attempt to solve this general problem in this paper, instead we try to alleviate
the difficulty in finding the optimal parameterization of a trimmed surface by
exploiting additional information provided by the user.

(a) (b) (c)

Fig. 1: Trimmed surface fitting and labeled parameterization. (a): Original sur-
face. (b): Labels: west (green), south (yellow) and isolines. (c): Full fitted
surface with mean curvature map.

In a process we call labeling, the user is asked to put labels (North, East,
South, West) on parts of the surface boundary, suggesting that a given part is
to be mapped to a certain side of the domain rectangle. Unlabeled parts are free
to be optimized during the parameterization. The process is illustrated in Fig-
ure 1. We present a method for computing a parameterization which respects the
constraints implied by labeling with small geometric distortion. Our constrained
parameterization method is based on a two-step procedure: we first map the
individual triangles to the plane simply by rotations; then we ”stitch” these ro-
tated triangles together into a consistent planar mesh. (Note: a similar labelling
concept has been formerly developed in the reverse engineering system Geomagic
Studio [1], however, the solution published in this paper is a new approach.)

In what follows, we first survey the relevant literature, then describe our two-
step algorithm in detail. We describe how to enforce the constraints implied by
the labeling and we demonstrate the effectiveness of our approach by examining
the effect it has on the fitting of trimmed tensor product B-spline surfaces.

2 Related work

Initial parameterization for surface fitting. We do not attempt to give a survey
of surface fitting algorithms, the interested reader is referred to Weiss et al. [43]
and the references therein. In our experiments we use a variant of the iterative
least-squares fitter described by Weiss et al. [43], but otherwise we make no
assumptions about the way the surface is being fitted. As we have mentioned
earlier, most methods for initial parameterization project the data points onto
some simple surface - projecting onto a least-squares plane or a cylinder are
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popular choices in practice. A more sophisticated approach is described by Ma
and Kruth [25], who project onto a rough parametric fit, constructed from the
boundaries and interior section curves. Piegl and Tiller [28] project onto Coons
patches or tensor product splines, depending on the complexity of the geometry.
Neither of these methods are applicable to trimmed patches, as they assume
that all 4 boundary curves are available. Pottmann and Leopoldseder [30] and
Azariadis [2] both describe generalizations of the active contours idea in image
processing, which means iteratively deforming a reference surface until it ap-
proximates the given data. Krishnamurthy et al. [18] optimize a set of isolines
by minimizing a spring-like energy - while this is yet again restricted to 4-sided
patches, a similar method potentially applicable to the trimmed case has been
proposed by Wallner et al. [41]. Floater [12] parameterizes a point cloud with a
meshless variant of Tutte-type mesh parameterization methods, with the same
limitations regarding convex boundary curves. The use of mesh parameterization
methods in the surface fitting context has been described in detail by Weiss et
al. [43], but said work has preceded the development of modern free-boundary
parameterization methods and the labeling problem is not addressed. While the
method of Kós et al. [17] can be extended to handle labeling constraints for
trimmed patches1, it is still based on a fixed boundary scheme and its imple-
mentation is highly complex compared to the method we propose. More recently
Lai et al. [19] and Wang et al. [42] parameterize triangle meshes in a feature-
sensitive way to facilitate surface fitting - however the problem of trimming is
not addressed.

Mesh parameterization. Mesh parameterization has a very extensive and rich
literature - the unacquainted reader should first refer to the thorough surveys
of Sheffer et al. [34] and Hormann et al. [15]. The simplest methods are based
on Tutte’s theorem on planar graphs [38], which allows us to compute a valid
parameterization as long as the boundary curve is mapped to a fixed convex
polygon [11,13]. While there are ways to generalize these methods to non-convex
boundaries [20,17], the majority of modern parameterization methods allow the
boundary curve to be optimized as part of the algorithm. A popular approach is
to minimize the angular distortion, i.e. compute a conformal map by optimizing
some functional of the positions [21,10], angles [33,45] or edge lengths [36,4], as
this problem usually has a well-defined, unique solution easily found by solv-
ing a linear system. Optimizing some more general distortion measure tends to
require expensive non-linear optimization [14,31] - an important exception is
As-Rigid-As-Possible (ARAP) parameterization [24], which employs an iterative
two-phase optimization scheme, and thus directly inspired the constrained pa-
rameterization method described in this paper. Our approach is also very closely
related to vector field design [9] and field-aligned global parameterization algo-
rithms [16,6,27].

1 Personal communication of Géza Kós.
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3 Constrained parameterization algorithm

The parameterization methods we propose can be considered as a variant of
ARAP parameterization or more precisely the local-global iterative algorithm
for finding the local minimum of the ARAP energy, first proposed by Sorkine and
Alexa [35]. The basic observation is that a parameterization is - up to translation
- nothing else but a collection of linear maps, representable by 2×2 matrices (Ja-
cobians) in arbitrary per-triangle reference frames. When the parameterization is
without distortion, i.e. it is isometric, all of these maps are rigid transformations
(rotation matrices); and thus a natural measure of distortion is the ”distance”
(e.g. in Frobenius norm) between the map and the rotation closest to it. This
suggests the following two-step method for computing the parameterization (see
Figure 2):

1. Compute a set of rigid transformations for the triangles (disregarding their
connectivity)

2. Stitch together the rotated triangles triangles into a valid planar mesh

We will see that a great advantage of this method is that we can enforce con-
straints (e.g. those arising from a labeling) in a natural manner.

3D Mesh Step 1 Step 2

x

y
z

u

v

RT

JT

u

v

Fig. 2: Illustration of our parameterization method for a triangle fan. Step 1:
the 3D triangles are flattened independently in the u− v plane with pure
rotations RT . Step 2: the rotations are ”stitched” together in a least-
squares manner to give the Jacobians JT of a planar mesh. See also Section
3.2.

3.1 Computing the rotation matrices

Imagine that we flatten the mesh isometrically, face-by-face, by placing a single
arbitrary triangle on the plane and then traversing a dual spanning tree of the
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triangles, flattening each new triangle in the obvious way. Such a simple proce-
dure will obviously fail to provide a natural layout in the plane, due to the fact
that most surfaces have non-zero Gaussian curvature, which for a triangle mesh
means that around vertices the triangle fans might have non-zero angle defect.
This already suggests a solution to the problem: instead of simply flattening the
triangles along the edges, apply additional rotations, in a way that distributes
the angle defect evenly around each vertex (and around each homology gener-
ator for multiply connected surfaces). This leads to an underdetermined set of
linear equations Fω = K for the rotation angles ω, where F is the vertex-edge
adjacency matrix and K is the vector of Gaussian curvatures at the vertices2,
which we want solve in a least-norm manner:

minimize
ω

‖ω‖2

subject to Fω = K
.

This is a standard optimization problem [7], which can be solved e.g. by sparse
QR factorization. Note that the method we described is practically equivalent
to the so-called discrete connection method for vector field design on discrete
surfaces [9]. Given the additional rotations, the rotation matrices are computed
by traversing the faces as described above.

Enforcing constraints During this phase of the parameterization, we can ob-
viously enforce any constraint which can be expressed as a set of linear equations
for the rotation angles. For labeling, we might either need two adjacent edges to
make a 0 or 90 degree angle or we might want two distant edges to do the same.
The first case simply means adding an extra equation for the boundary vertex,
while the latter is equivalent to an equation involving an arbitrary dual path
between the two edges. To get a proper global orientation, the first triangle (the
root of the spanning tree) must contain one of the labelled edges and must be
placed on the plane according to its assigned label. Also, while redundant con-
straints might simplify the implementation, they are to be avoided in practice
as they often become contradictory due to floating point errors.

3.2 Computing the planar mesh from the rotations

Given the set of rotation matrices, we wish to compute a parameterization,
which has as its Jacobians, matrices that are close to the rotations as possible
in Frobenius norm. This means solving the following optimization problem for
the vertex parameters u and v:

minimize
u,v

∑
T ‖JT (u, v)−RT ‖2F .

2 For multiply connected surfaces, the system also includes equations corresponding
to inner boundary loops.
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Solving this optimization problem directly leads to a pair of linear systems,
equivalent to discrete Poisson equations (see [8] or [3]):

Lu = bu

Lv = bv,

where L is the well-known cotangent Laplacian [26,29] and bu and bv are the
discrete divergences of the columns of the Jacobian matrices - see [24] for explicit
formulas.

Enforcing constraints As we minimize a quadratic form of the positions, we
can enforce any linear constraint by Lagrange multipliers. For labeling we could
simply require that the u and v coordinates of vertices lying on the same sides
of the domain rectangle to be the same. This is somewhat redundant, however,
as the only constraints which are not satisfied already for the rotations, are that
disjoint segments with the same label should lie on the same line in the plane.
Thus a more natural alternative is to map the labeled edges with exactly the
previously computed rotations, while allowing them to be scaled by an arbitrary
factor. This means adding equations of the following form:

JT |e = αTRT ,

i.e. that the Jacobian JT restricted to the labeled edge e is some (unknown) scalar
αT times the rotation RT . We regularize the scaling factors by augmenting the
minimized energy with terms |αT − 1|2. Now, to force disjoint segments to lie
on the same line, we only have to require the equality of the u or v coordinates
of a single vertex from each segment. In any case, the problem is of the form

minimize
x

1
2x

TAx− bTx
subject to Cx = d

,

which is solved by the linear system[
A CT

C 0

] [
x
ν

]
=

[
b
d

]
,

where ν is a vector of Lagrange multipliers. One might object, that we could
simply constrain the labeled vertices to have the same u or v coordinates, without
even enforcing any constraints in the first phase. While this is indeed possible, our
method can be considered as a priori more robust then this naive approach: by
first computing a natural rigid layout for the triangles, enforcing the constraints
require less drastic deviation from the rotations, which leads to smaller distortion
and a reduced chance of triangle flips. Note that instead of trying to be close to
the rotation matrices, we could in principle minimize any quadratic functional
of the positions in this phase.
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3.3 Ensuring local injectivity

A significant drawback of using the cotangent Laplacian for stitching the trian-
gles together is that the triangles might reverse their orientation, i.e. the param-
eterization might not be locally injective, which is quite common in the presence
of constraints - this is a limitation our method shares with the majority of pub-
lished mesh parameterization algorithms. As the corresponding constraints are
non-convex functions of the unknowns, we solve the problem heuristically using
an iterative weighting scheme: if a triangle happens to flip, we give it a larger
weight in the energy, and we iterate in this manner until all flips are resolved
(for practical examples this happens within no more than a dozen or so itera-
tions). While more robust alternatives have appeared in recent works [22,5,32],
these usually require potentially expensive inequality-constrained optimization.
A practically identical scheme is applied to the scaling factors, as they are also
not guaranteed to be positive, unless we add explicit inequality constraints to
the problem.

4 Results

We compare the fits computed by a black-box solver (based on the method
of [43]) with a built-in projective parameterization and our own method for
trimmed surfaces. Figure 3 shows results (parameterization, curvature and de-
viation maps) for the surface of Figure 1 for the projective parameterization
(first row) and two different kinds of labeling (second and third rows). Figure 4
shows results for another test surface. The curvature maps indicate mean curva-
tures, the isolines of the surfaces have been superimposed. Observe how isolines
get aligned to the prescribed labels. The deviation maps shows various colored
areas, indicating ’within tolerance’ (green), negative (blue) and positive (red)
distances. The control nets of the surfaces have also been added.

In general, the labeled parameterization yields surface approximations, which
have better curvature distribution (i.e. the surfaces are fairer). This may increase
the approximation error to a minimal extent compared to the projective method,
though this is a negligible trade-off, as the fairness of the final surface is of utmost
importance. The surfaces beyond the trimmed areas should extend smoothly and
naturally, being a crucial issue when further computations for intersections, fillet
generations, offsetting, etc. need to be performed.

5 Limitations and Future Work

Besides the ad-hoc way we enforce local injectivity, an important limitation is
that we cannot guarantee the global injectivity of the mapping, i.e. parts of
the mesh might overlap, even with every triangle having the right orientation.
While we have not yet observed this in the context of trimmed surface fitting,
it might easily happen for surfaces with high curvature, complex boundary and
disjoint segments getting the same label. Ensuring global injectivity is a much
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(a)
(b) (c)

(d)
(e) (f)

(g)
(h) (i)

Fig. 3: Test example shown in Figure 1. First row: projective parameterization.
Second row: Labels - west and south. Third row: Labels - west and east.

more difficult problem than ensuring local injectivity - at the time of writing,
published methods only guarantee global bijectivity if the boundary of the do-
main is fixed [23] - for general, optimized boundaries the problem appears to
be wide open. In our case one might attempt at an imperfect solution (which
would nonetheless cover most practical situations) by prohibiting disjoint seg-
ments with the same label to intersect via simple linear inequalities. We also
cannot guarantee that the entire mesh lies within the rectangle defined by the
labeled boundaries - an example of this can be seen in Figure 4(e). This is even
less likely to cause a serious problem, but its solution is very simple if we can
enforce inequality constraints. While there are highly efficient general-purpose
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(a)

(b)
(c) (d)

(e) (f) (g)

Fig. 4: Test example for a trimmed surface. (a): Original surface with label-
ing. (b)-(d): projective parameterization. (e)-(g): Labels - north, east and
south.

solvers for inequality-constrained convex and even non-convex optimization, re-
cently published results suggest that geometric problems might benefit greatly
from customized solvers exploiting their peculiar structure [32].

We only compute a single parameterization, by minimizing some kind of
geometric distortion. The user might prefer a parameterization that has higher
distortion but fills a larger percentage of the domain rectangle or maybe satisfies
other application-specific requirements. Thus, it might be worthwhile to adapt
recent results in shape-space exploration [44] and constrained modelling [37] to
allow the user more freedom in choosing the parameterization, without sacrificing
efficiency.

Finally, guessing a labeling without user assistance and defining what makes
a parameterization ”good” for surface fitting are challenging avenues for future
research.
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6 Conclusions

We have presented a method for computing a parameterization of a triangle
mesh, useful for fitting the mesh with a trimmed tensor-product B-spline surface.
The parameterization respects a boundary labeling provided by the user. The
algorithm is based on a two-step iterative procedure, which is capable of enforcing
the constraints implied by the labeling, with negligible additional cost over the
unconstrained case. The parameterizations have been used to initialize a least-
squares fitting algorithm and resulted in fits that are more natural and of higher
quality than those computed from traditional projective parameterizations.
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21. B. Lévy, S. Petitjean, N. Ray, and J. Maillot. Least squares conformal maps for
automatic texture atlas generation. In ACM Transactions on Graphics (TOG),
volume 21, pages 362–371. ACM, 2002. 4

22. Y. Lipman. Bounded distortion mapping spaces for triangular meshes. ACM
Transactions on Graphics (TOG), 31(4):108, 2012. 8

23. Y. Lipman. Bijective mappings of meshes with boundary and the degree in mesh
processing. SIAM Journal on Imaging Sciences, 7(2):1263–1283, 2014. 9

24. L. Liu, L. Zhang, Y. Xu, C. Gotsman, and S. J. Gortler. A local/global approach
to mesh parameterization. In Computer Graphics Forum, volume 27, pages 1495–
1504. Wiley Online Library, 2008. 4, 7

25. W. Ma and J.-P. Kruth. Parameterization of randomly measured points for least
squares fitting of B-spline curves and surfaces. Computer-Aided Design, 27(9):663–
675, 1995. 4

26. R. H. MacNeal. The solution of partial differential equations by means of electrical
networks. PhD thesis, California Institute of Technology, 1949. 7

27. A. Myles and D. Zorin. Global parametrization by incremental flattening. ACM
Transactions on Graphics (TOG), 31(4):109, 2012. 4

28. L. A. Piegl and W. Tiller. Parametrization for surface fitting in reverse engineering.
Computer-Aided Design, 33(8):593–603, 2001. 4

29. U. Pinkall and K. Polthier. Computing discrete minimal surfaces and their conju-
gates. Experimental mathematics, 2(1):15–36, 1993. 7

30. H. Pottmann and S. Leopoldseder. A concept for parametric surface fitting
which avoids the parametrization problem. Computer Aided Geometric Design,
20(6):343–362, 2003. 4

31. P. V. Sander, J. Snyder, S. J. Gortler, and H. Hoppe. Texture mapping progressive
meshes. In Proceedings of the 28th annual conference on Computer graphics and
interactive techniques, pages 409–416. ACM, 2001. 4

32. C. Schüller, L. Kavan, D. Panozzo, and O. Sorkine-Hornung. Locally Injective
Mappings. Computer Graphics Forum, 32(5):125–135, 2013. 8, 10

33. A. Sheffer and E. de Sturler. Parameterization of faceted surfaces for meshing
using angle-based flattening. Engineering with Computers, 17(3):326–337, 2001. 4

http://static.cs.brown.edu/courses/csci2240/papers/mean_value.pdf
http://www.inf.usi.ch/hormann/papers/Hormann.2000.MAE.pdf
http://alice.loria.fr/publications/papers/2007/SigCourseParam/param-course.pdf
http://www.mi.fu-berlin.de/en/math/groups/ag-geom/publications/db/KNP07-QuadCover.pdf
http://www.mi.fu-berlin.de/en/math/groups/ag-geom/publications/db/KNP07-QuadCover.pdf
https://graphics.stanford.edu/papers/surfacefitting/surf_fit.pdf
http://www.sciencedirect.com/science/article/pii/S0010448506000686
http://www.sciencedirect.com/science/article/pii/S0010448506000686
http://cg.postech.ac.kr/research/papers/mesh_parameterization/cng02.pdf
http://alice.loria.fr/publications/papers/2002/lscm/lscm.pdf
http://alice.loria.fr/publications/papers/2002/lscm/lscm.pdf
http://www.wisdom.weizmann.ac.il/~ylipman/BoundedDistortion/bounded_distortion_may_1.pdf
http://www.wisdom.weizmann.ac.il/~ylipman/2014_SIIMS_bijective_93975.pdf
http://www.wisdom.weizmann.ac.il/~ylipman/2014_SIIMS_bijective_93975.pdf
http://gvi.seas.harvard.edu/sites/all/files/Gortler_LocalGlobal.pdf
http://gvi.seas.harvard.edu/sites/all/files/Gortler_LocalGlobal.pdf
http://www.sciencedirect.com/science/article/pii/0010448594000189
http://www.sciencedirect.com/science/article/pii/0010448594000189
http://ashishmyles.com/projects/files/12incflatten.pdf
http://www.sciencedirect.com/science/article/pii/S0010448500001032
http://page.mi.fu-berlin.de/polthier/articles/diri/diri_jem.pdf
http://page.mi.fu-berlin.de/polthier/articles/diri/diri_jem.pdf
http://www.geometrie.tuwien.ac.at/ig/papers/pot129.pdf
http://www.geometrie.tuwien.ac.at/ig/papers/pot129.pdf
http://wwwvis.informatik.uni-stuttgart.de/plain/vdl/vdl_upload/91_20_siggraph01-TexMappingPM.pdf
http://wwwvis.informatik.uni-stuttgart.de/plain/vdl/vdl_upload/91_20_siggraph01-TexMappingPM.pdf
http://igl.ethz.ch/projects/LIM/LIM-2013-schueller.pdf
http://igl.ethz.ch/projects/LIM/LIM-2013-schueller.pdf
http://www.math.vt.edu/people/sturler/Publications/EWC_ParmFactdSurfMshABF.pdf
http://www.math.vt.edu/people/sturler/Publications/EWC_ParmFactdSurfMshABF.pdf


Labeled parameterization for high-quality surface fitting 13

34. A. Sheffer, E. Praun, and K. Rose. Mesh parameterization methods and their ap-
plications. Foundations and Trends R© in Computer Graphics and Vision, 2(2):105–
171, 2006. 4

35. O. Sorkine and M. Alexa. As-rigid-as-possible surface modeling. In ACM Inter-
national Conference Proceeding Series, volume 257, pages 109–116. Citeseer, 2007.
5
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