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Abstract
Approximating data points of an irregular, trimmed triangular mesh by tensor-product surfaces, such as NURBS,
is an important task in computer-aided geometric design, as well as computer graphics. One crucial issue is the
parameterization of the data points, that will have a strong influence on the quality of the surface to be fitted.
Another important issue is how to avoid weak control points, that are not constrained by the data points and might
lead to numerically unstable, wildly oscillating results.
In a recent paper,11 current authors proposed techniques that facilitate tensor-product fitting. First, a 2D param-
eterization of the data points is computed, based on labels assigned to some of the boundary segments, and a
corresponding virtual guiding frame. Second, the surface is extended in 3D, i.e. after adding supplementary data
points to fill the domain rectangle, the data points are mapped back to optimized positions in 3D. In this paper,
after giving an overview of these techniques, we focus on the extension step and demonstrate its effect using a few
examples.

1. Introduction

The approximation of data points or triangle meshes by
tensor-product parametric surfaces, such as B-splines or
NURBS, is an important task in geometric modeling and re-
verse engineering. Surface fitting is a complex problem that
depends on various parameters, including tolerances, knot
vectors, smoothing terms and many others. In order to for-
mulate surface fitting as a linear least-squares problem, (u,v)
parameter values must be assigned to the data points. In par-
ticular, we aim to approximate trimmed regions of irregu-
lar triangle meshes that are bounded by a multi-sided loop
of boundary segments, in which case we have no explicit
information about the orientation of the four boundaries to
be created, i.e the parameterization of the surface, and its
surface geometry beyond the trimmed region. There are in-
finitely many tensor-product surfaces that approximate a set
of given data points – we aim to produce surfaces that are
well-suited for CAGD applications.

In a recent paper11 current authors proposed two useful
“preprocessing” techniques, that facilitate the fitting of high-
quality surfaces. First, a constrained 2D parameterization
of the data points is computed, based on labels assigned to
some of the boundary segments, and a corresponding virtual
guiding frame.

The second subsequent technique is called surface exten-

sion. After adding supplementary data points to fill the do-
main rectangle, an extended triangulation is created, and the
data points are mapped back to optimized positions in 3D.
In this way a four-sided mesh is obtained, that smoothly
extrapolates the original trimmed region and is ready to be
approximated by a tensor-product surface. The extension of
the trimmed regions is critical for the stability of surface fit-
ting. Without extension, the support of certain basis func-
tions might contain very few data points or none at all. Con-
sequently the location of the corresponding weak control
points will be unconstrained, and the solution of the related
badly conditioned linear system might yield a surface with
unpredictable oscillations beyond the trimmed regions.

In this paper, we give a brief summary of these methods,
with a particular focus on guiding frame computation and
mesh extension. Due to spatial limitations, we omit certain
technical details and precise formulas – for these, the reader
is referred to the Appendix of.11

Our paper is structured as follows. After a brief overview
on previous research in section 2, we discuss the concept
of labeling to orient the surface to be fitted and the work-
flow of our approach (section 3). We describe our method
for constrained parameterization, including the computation
of guiding frames in section 4. The extension of meshes in
3D is the topic of section 5. Finally, we demonstrate the ef-
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fectiveness of labeling and extension on a few test cases in.
section 6

2. Previous Work

The literature on tensor-product fitting algorithms is vast,
we refer to the works12, 13 and the references therein. See
[Ref. 11, Sec. 2] for a more thorough survey.

2.1. Handling Weak Control Points

The problem of weak control points (or overfitting) in the
context of trimmed tensor-products have been studied in
depth by.13 There, a heuristic solution has been proposed,
which constrained the weak control points to remain in the
vicinity of a previous, loosely fitted surface.

When fitting with the usual least-squares energy, weak
control points lead to a linear system with a large condi-
tion number, and thus to numerically unstable results. The
same problem arises when tensor-product splines are used
as basis functions for numerical analysis over trimmed ge-
ometries – see the recent survey9 and the references therein.
In the context of analysis, the instability of trimmed splines
can be handled using a non-standard basis constructed by
weighting or extrapolating the untrimmed functions, as dis-
cussed in e.g.4

2.2. Extrapolating surface meshes

Smooth extrapolation of surface meshes beyond their bound-
aries is a well-researched area, see1, 3 and the references
therein. Our approach is most closely related to variational
and parameterization-based techniques, such as.2, 5, 7

3. Preliminaries

Our input comprises the following set of data:

• a manifold triangle mesh M (possibly multiply con-
nected),
• a segmentation of the perimeter boundary loop of M into

a sequence of polylines,
• a labeling assigned to the boundary segments of M, as

explained below.

3.1. Labeling

South

North

West Eastv

u

A central element of our work is
the concept of labeling, which is
a powerful technique to orient the
yet-unknown surface. This makes
it possible to accomplish certain
requirements and narrow down the
set of infinitely many parameteri-
zations. Some of the input bound-
ary segments can be labeled – using our notations – as North,

West, South, East, prescribing that a segment needs to lie
somewhere on the boundary of the surface to be fitted. In
other words, we prescribe that a segment needs to be mapped
to a particular side of the domain rectangle (see inset figure).
Other segments may remain Unlabeled. It is not necessary
that all four label types are used, and the same label may be
attached to more than one segment. Note that the exact loca-
tion and length of the labeled segments on the corresponding
sides of the rectangle remain undefined and will only be de-
termined later by constrained parameterization.

Labeling determines where a trimmed region needs to be
extended, and this simultaneously influences the number of
weak control points and thus the stability of the final fit. We
are not aware of any abstract characterization between the
geometry of a surface and its ideal parameterization, nev-
ertheless, it is intuitively clear that by a better orientation of
the surface we can reduce the “weak” areas in the parametric
domain.

The labeling of our test examples have been produced
manually and developing algorithms for automatic labeling
is subject of our future research. In the forthcoming sections
we will exploit the labeling information, but disregard its
meaning and origin.

3.2. Workflow

In this section we summarize the basic phases of the work-
flow we proposed in11 for evolving a trimmed triangular
mesh into a four-sided, fully parameterized mesh ready for
tensor-product surface fitting. The workflow is depicted in
Figure 1.

Phase I: Mapping from 3D to 2D

First, we parameterize the data points of the given region uti-
lizing the label information, details will be discussed in sec-
tion 4. We first compute a 3D guiding frame, as a rough ap-
proximation of the four boundaries of the surface. It approx-
imates the labeled segments, and comprises missing bound-
ary pieces and corners, where needed. The guiding frame
is used to set the location and the relative proportion of the
labeled segments. Next, a constrained parameterization is
computed by assigning u,v coordinates to each data point,
so that geometric distortion is minimized, and the constraints
obtained from the guiding frame are satisfied.

Phase II: Mapping from 2D to 3D

Having the data points parameterized, we can apply least-
squares fitting. As discussed earlier, the presence of weak
control points might lead to numerical instabilities; this can
only be alleviated with excessive smoothing/regularization.
To avoid this problem we extend the original data into a four-
sided mesh, that can be fitted directly, permitting tight toler-
ance within the region and no wiggling beyond its bound-
aries. We illustrate the stabilizing effect of mesh extension
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Figure 1: Workflow

in Figure 4. Note that this phase can be beneficial even when
no labels and guiding frame have been supplied in the previ-
ous phase. First, the already parameterized input data points
get supplemented by new, “artificial” data points so that they
fill in the entire domain. Often the default bounding rect-
angle is further enlarged to provide margins for the surface
to be fitted. The supplementary points are then triangulated
yielding an extended parameterized mesh in 2D. Then the
3D locations of the supplementary data points need to be
determined, as well, so that the extended mesh smoothly ex-
trapolates the original trimmed region and forms a four-sided
parameterized mesh. Details are discussed in section 5.

Finally the extended mesh is approximated by a tensor-
product surface. Here we make no assumption on the applied
fitting algorithm, nevertheless, we believe that our proposed
techniques potentially benefit any tensor-product fitting pro-
cedure.

4. Mapping from 3D to 2D

In the first phase we map the input triangle mesh to the inside
of a yet-unknown rectangular domain within the (u,v) plane:
f : (xi,yi,zi) 7→ (ui,vi).

We minimize the geometric distortion of the flattening and
make use of labeling information, when it is available, by
mapping the labeled boundary segments onto sides of the
domain rectangle. We do not wish to prescribe the position
and proportion of the domain rectangle, or where the labeled
segments are located along the sides.

A naive approach that simply constrains the labeled
boundary segments to u or v isolines is generally not suf-
ficient to produce an acceptable parameterization. Generally
speaking, it is important that the 2D mesh possesses simi-
lar relative magnitudes as the 3D original. In particular, we
aim to preserve the relative lengths of the labeled segments
within the corresponding surface boundaries. However, as
the untrimmed boundaries are not known a priori, we have
to make a rough approximation of them based on the avail-
able data – which is the topic of the next subsection.

4.1. Guiding Frames

Our goal is to infer the boundary curves of the untrimmed
patch. In general, we have to estimate arcs that connect the
label segments, and the locations of indefinite corners.

Arcs between consecutive label segments are computed by
interpolating the endpoints and tangents of the two curves
with a cubic Hermite spline. Setting the tangent lengths
equal to the Euclidean distance between the segment end-
points gives good results in practice.

It is more challenging to find corners of the patch by ex-
tending the labeled boundaries. To make such a guess with-
out fitting the entire surface, we propose a general method
that computes the guiding frame – a collection of free-form
curves in 3D that roughly approximates the presumed sur-
face boundaries and gets optimized iteratively.

We describe the method for the case when all four labels
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(a)

(b)
(c)

Figure 2: Examples of (quintic) guiding frames in blue

are present. Take the points in R3 on the labeled bound-
aries, denoted by (li1, . . . , l

i
ni), (i = 1,2,3,4); we look for

parametric curves ci(t) : [0,1] → R3, (i = 1,2,3,4) with
ci(1) = ci+1(0) (i mod 4), approximating the points in a
least-squares sense. In particular, we aim to solve the op-
timization problem

minimize
ci(t)

4

∑
i=1

(
ni

∑
j=1

∥∥∥ci(t j)− lij
∥∥∥2

+λEsm.(ci)

)
︸ ︷︷ ︸

Eframe

(1)

where t j is the parameter value assigned to the data point l j,
Esm. is a regularization term, measuring the smoothness of
the curve i, weighted by λ.

At each iteration, we first project the data points on
the corresponding sides of the current frame configuration,
which gives them a parameterization. Then, we optimize the
frame geometry by solving (1), and iterate in this manner.

We represent the frame using Bézier curves, as the global
support of Bernstein polynomials helps avoiding weak con-
trol points and bad conditioning. For the smoothness energy,
we choose the usual (parametric) bending measure:

Esm.(c) =
∫ 1

0
‖c̈(t)‖2 dt, (2)

in which case the functional remains quadratic in the control
points.

To avoid overfitting the data, or getting stuck in local op-
tima, we fit frames of progressively higher degree. We start
with a linear Bézier frame, i.e. a 3D quadrilateral, defined
by the shared corners of the adjacent labels or the average
of their endpoints. We optimize the linear frame, and when
it cannot be improved any further, we raise its degree and
proceed with fitting the quadratic frame and iterate until we
approximate the labeled data points within a prescribed tol-
erance.

In Figure 2 we show three trimmed meshes, where guid-
ing frames were computed with the described algorithm. We
call attention to Figure 2b, where the labeled segments are

nearly parallel at their endpoints, so naive corner estimation
methods by extending tangents, etc. would fail.

When some labels are missing, we optimize a frame with
only three or two curves. We note that in these cases, param-
eterization is less constrained and distortion minimization is
generally sufficient for setting correct 2D proportions.

4.2. Labeled Parameterization

With the guiding frame at hand, we can compute a parame-
terization that respects the constraints implied by the labels
and the frame. This is achieved in two steps, as illustrated by
Figure 3:

• We first map the triangles to the plane with rigid motions,
so they are oriented according to the label constraints.

• Then, we “stitch” this triangle soup together to form a
connected planar mesh, while respecting the alignment of
the constrained regions computed previously, only opti-
mizing their scale to minimize distortion and retain the
proportions of the guiding frame.

Our approach is an extension of the Local-Global al-
gorithm for As-Rigid-As-Possible (ARAP) parameteriza-
tion.6, 10 For details on this step, we refer to [Ref. 11, Sec.
4.2].

5. Mapping from 2D to 3D

A parameterized trimmed region can readily be fitted by a
tensor-product surface. However, we might have weak con-
trol points outside the trimmed region, with very few data
points in the support of their basis functions and this might
lead to numerical instability and excessive wiggling of the
fitted surface. We protect against the effects of weak con-
trol points by extending the original triangle mesh in the 3D
space. The stabilizing effect is illustrated in Figure 4. Our
method is a variant of hole-filling and surface extrapolation
techniques; starting with the parameterization of the mesh,
we extend the domain to an enlarged domain rectangle, tri-
angulate it, and optimize the new vertex positions in 3D for
smoothness and shape-preservation.
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3D mesh with labels Triangles mapped isometrically to the domain Consistent 2D Mesh
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Figure 3: Steps of labeled parameterization

(a) Fit without extension (b) Fit with extension

Figure 4: Stabilizing effect of extension (colors indicate mean curvature; the size of control points is proportional to the number
of data points in their support)

5.1. Extension in 2D and Triangulation

We sample the region outside the parameterized mesh in the
(u,v) plane with a regular grid of points. The grid size is
chosen, such that in both the u- and v-directions the number
of samples is the square root of the number of mesh vertices
scaled by the ratio of the areas of the domain rectangle and
the parameterized mesh. The supplemented vertices Vnew,
together with the original boundary vertices ∂Vold are then
triangulated into the 2D meshM′ = (V ′,E ′,T ′). In practi-
cal scenarios, it is often required that the domain of the fitted
surface extends beyond the bounding rectangle of the param-
eterized data points — with this in mind, we add additional
layers of supplementary vertices (see for example Figure 6).

5.2. Extension in 3D

We want to determine the 3D positions pi =
[
xi yi zi

]
of

the new vertices vi ∈ Vnew so they provide a smooth exten-
sion of the original 3D mesh.

We minimize an energy of the vertex coordinates, that is
composed of two terms:

E3D = (1−wFair)EExt.+wFairEFair, (3)

where EExt. ensures that we smoothly extrapolate the origi-
nal mesh, EFair adjusts the fairness of the extended surface,
and wFair is a weight controlling the trade-off between them.
We next describe both of these energies.

5.2.1. Extension energy

To ensure smooth extrapolation of the original mesh bound-
aries, we have chosen to optimize the quadratic polyhar-
monic energy3 of the coordinate functions:

EExt. =
∥∥∥∇kp

∥∥∥2
, (4)

which enforces approximate Gk−1 continuity along the
boundary. In practice we set k = 2, (enforcing G1 continu-
ity), or k = 3 (enforcing G2 continuity).
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We illustrate the effect of these two energies in Figure 5,
where a three-sided patch with two labeled edges is ex-
tended in two different ways. Both extensions are meaning-
ful from an engineering point of view, and both surfaces will
smoothly approximate the given data points within a pre-
scribed tolerance, but their shapes are significantly different.
The properties of the final CAD model and the forthcoming
operations determine which representation should be cho-
sen. Our experience shows that – as a default – G2 extensions
are preferable, since these generally yield the most natural
shapes beyond the trimmed regions. At the same time, there
exist cases, when enforcing strongly curved extensions may
yield counter-intuitive geometric constraints, and switching
to G1 produces better results.

5.2.2. Fairness Energy

Minimizing the extension energy ensures a smooth connec-
tion to the original surface, but the unconstrained boundaries
of the four-sided mesh might suffer unnatural shrinkage and
wiggling. To avoid this, we add a fairness energy composed
of two terms:

EFair. = (1−wIso)EMesh +wIsoEIso, (5)

where EMesh measures the fairness of the mesh, EIso that of a
set of constant parameter isocurves. wIso controls the trade-
off between these objectives.

5.2.2.1. Isocurve Fairness This term aims to achieve an
even curvature distribution along the boundary for the ex-
tension, as well as ensuring that labeled boundary segments
are smoothly extrapolated as isocurves to the boundary. We
choose to minimize, for a set C of isocurves (which are con-
tained in the mesh as polylines) the energy:

EIso =
∫

c∈C

∣∣∣∣∣dkx(t)
dtk

∣∣∣∣∣
2

+

∣∣∣∣∣dky(t)
dtk

∣∣∣∣∣
2

+

∣∣∣∣∣dkz(t)
dtk

∣∣∣∣∣
2
dt

which is discretized over the polylines using simple finite
differences. Note that for k = 2, it measures the curvature
and for k = 3, the curvature variation of the curves.

We include in the set of optimized isocurves, the four
boundaires of the extension, as well as those containing the
labeled segments of the original mesh, see Figure 6 for an
illustration of its effect.

5.2.2.2. Mesh Fairness The isocurve energies serve as lo-
calized (soft) constraints on the mesh, which leads to local-
ized distortions and artifacts. This is further enhanced us-
ing again the method of,8 i.e. by adding the energy term
EMesh measuring the squared sum of differences between the
ARAP distortions of adjacent triangles. We set the rotation
matrices based on an initial extension computed by minimiz-
ing only the energy EExt..

Note, that we optimize the smoothness of the ARAP en-
ergy, but not its actual value. This is motivated by the fact

that the 2D parameterization might be distorted due to the
imposed constraints, in which case the inverse mapping into
3D is expected to have high ARAP distortion, as well.

6. Discussion and Results

In this section we present our results by means of several
examples. We do not discuss the tuning of fitter parameters,
as this would force us to compare various fitting methods as
well, rather we prefer using a black-box surface fitter with a
prescribed number of control points and negligible smooth-
ing weights, that permit comparing the effects of parame-
terization in different cases. We will compare “ad-hoc” sur-
faces, where parameterization has not been optimized, with
surfaces where labeling and/or extensions have been applied.

6.1. Test Cases

6.1.1. Test Case 1

We demonstrate the importance of stable surface extensions
by a simple reverse engineering example. Segmentation pro-
duces a free-form and an extruded region bounded by two
trimming loops, the mesh is shown in Figure 7a. After fit-
ting, these surfaces are exported into a CAD system to build
a B-rep model to be modified by the user. We consider two
use cases: in the first, a sharp edge needs to be created; in
the second, a blend with a smaller radius. Both the intersec-
tion curve and the bottom rail curve of the blend must lie on
the free-form surface beyond the original trimming loops. A
simple regularized fit may produce oscillations and imper-
fect curves, as shown in Figure 7b and Figure 7c. Our pro-
posed approach yields curves of higher quality due to the sta-
bility of the extension method, see Figure 7d and Figure 7e.
It should be noted that setting the regularization weights is a
delicate issue; low values may produce unwanted wiggling,
high values may supersede accuracy. In contrast, extension
based fitting is numerically stable and less sensitive to fine
tuning. If the model is modified in a later phase, for example
the extruded surface is shifted or the radius of the fillet is
changed, this surface is suitable for these operations.

6.1.2. Test Case 2

The trimmed mesh in this test comes from a fairly com-
plex, molded mechanical part, originally defined by several
Boolean and filleting operations. Our task is to reproduce a
nicely extendable primary surface over the trimmed region,
as this will be necessary to compute intersections and fil-
lets for reverse engineering the object. The stability of this
primary surface is crucial for all dependent geometric enti-
ties.A simple ARAP parameterization results in the fit shown
in Figure 8a. We show another surface using the same pa-
rameterization, but now applying extension, as well, on Fig-
ure 8b: the obtained surface is clearly better. To further im-
prove the fit quality, labeling can be applied which results
in the surface seen on Figure 8c. Observe, that the North
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(a) G1 extension (b) G2 extension

Figure 5: Comparison of mesh extension energies with different continuity (colors indicate mean curvature)

(a) Parameterization

(b) Without boundary fairing (c) With boundary fairing

Figure 6: Effect of boundary fairing (brown lines indicate constrained isocurves)

and South labels consist of several segments, and a corner is
also missing. Also note, that the previously shown guiding
frame (Figure 2a) suggests that the lengths of the North and
the South sides significantly differ, so adherence to labeling
requires a distorted parameterization.

6.1.3. Test Case 3

Our last example is a sheet metal part shown in the work-
flow (Figure 1); challenges are due to noisy data, the two
holes and the large missing portion of the surface to be fit-

ted. Fitting a high quality surface would be difficult without
labeling and extensions. The parameterization must be prop-
erly aligned and the weak control points must be stabilized.
“Ordinary” flattening of the mesh would produce a param-
eterization that results in a fit with excessive wiggling due
to the weak control points as shown in Figure 9a. If we ap-
ply extension, the surface quality is much better (Figure 9b),
although the surface remains quite large with a peculiar con-
trol net. As expected, the best results are obtained using both
labeling and surface extension. A labeled parameterization,
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(a) Mesh (b) Intersection without extension (c) Blend without extension

(d) Intersection with extension (e) Blend with extension

Figure 7: Test Case 1 (colors indicate mean curvature)

(a) No labeling/No extension (b) Only extension (c) Labeling & extension

Figure 8: Test Case 2 (colors indicate mean curvature)

as shown in Figure 1, produces smooth transitions over the
missing parts as can be seen in Figure 9c.

7. Conclusions

In this paper we discussed useful techniques that signifi-
cantly enhance the quality of tensor-product surfaces fitted
to triangle meshes. We have focused on parameterization
and extension techniques. Using labels and guiding frames
combined with ARAP mappings led to a special, constrained
parameterization for the trimmed mesh, that indirectly de-
fines a good orientation and layout for the surface. Extending
the trimmed parametric map in the domain and then accord-
ingly extrapolating the trimmed region in 3D has led to a
smooth, four-sided mesh, that facilitates fitting predictable,
well-controlled surfaces without undesirable oscillations.
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