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Abstract
The basic idea of curve network-based design is to construct a collection of smoothly connected surface patches
that interpolate boundary constraints extracted solely from the curve network. While the majority of applications
demands only tangent plane (G1) continuity between the adjacent patches, there are applications where curvature
continuous connections (G2) are required. Examples include handling special curve network configurations with
supplemented internal edges, “master-slave” curvature constraints and general topology surface approximations
over meshes. The first step of the surface generation process is the construction of interpolant surfaces that enforce
suitable cross-derivatives for transfinite surface patches; these interpolants are often called ribbons. For G2 inter-
polation we extend Gregory’s multi-sided surface scheme, and focus on creating and combining special parabolic
ribbons. We discuss the basic patch construction including the blending functions and a special sweepline param-
eterization. A proof of G2 continuity is given in the Appendix. The application of curvature continuous multi-sided
patches is demonstrated by a few simple examples.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling — curvenet-based design, transfinite surfaces, Gregory patches, G2 continuity

1. Introduction

In curve network-based design, surface models are directly
defined by a collection of freeform curves, arranged into a
single 3D network with general topology. Curves may come
from (i) sketch input, (ii) feature curves extracted from or-
thogonal views, (iii) curves traced on triangular meshes or
(iv) direct 3D editing. Once the curves are defined, all the
surfaces are generated automatically. This calls for a repre-
sentation based on geometric information extracted solely
from the boundaries. Transfinite surface interpolation is a
natural choice, as it does not require a grid of control points
to define the interior shape, and all n boundaries are han-
dled uniformly, unlike in the case of trimmed quadrilateral
surfaces. The ability to interactively edit prescribed bound-
aries and cross-derivatives is also an advantage in contrast to
recursive subdivision schemes.

The first step of surface generation is to compute cross-
directional data, such as common tangent planes and, when
needed, curvatures that will be shared by the adjacent
patches. Then interpolant surfaces or ribbons are generated,
that carry first or second-degree cross-derivative constraints
to be eventually interpolated by the transfinite surfaces.

The majority of multi-sided transfinite surfaces are de-
fined over convex domains, combining only linear ribbon
surfaces and enabling G1 continuity between the adjacent
patches. At the same time, there are several practical design
situations, where this approach is not sufficient, and higher
degree continuity is required.

(i) It often occurs that additional curves need to be in-
serted into the curve network to make it suitable for applying
convex methods. The supplemented curves must be compati-
ble with the already defined ribbons, and it is particularly im-
portant to produce seamless transitions along these curves. A
typical example is when two curves span a concave angle at
a common vertex and then a composite patch — with con-
vex domains — is created. Another example is to generate
surfaces by interpolating two disjoint loops with prescribed
slopes (see Figure 7 later in Section 5).

(ii) Another interesting situation is when a designer wants
to retain one of the surfaces (the master), but also wants to
prescribe a curvature continuous connection for the adjacent
patch (the slave), see Figure 8.

(iii) A third example is when we have a general topol-
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ogy curve network defined over a mesh and want to obtain
a good approximation of the interior data points (see Fig-
ure 9). Clearly, if we extract not only the normal vectors,
but also curvature information from the underlying mesh,
we can obtain a more accurate approximation.

In the above cases, it is possible to ensure G2 continu-
ity by using parabolic ribbons. In Section 2 we give an
overview of related publications. In Section 3 various meth-
ods to compute linear and parabolic interpolants will be dis-
cussed, while in Section 4 we introduce an extended Gre-
gory patch formulation with a new sweepline parameteriza-
tion that makes it possible to combine parabolic ribbons and
yield curvature continuous surfaces. A few examples will il-
lustrate the surface scheme in Section 5.

2. Previous Work

Most papers concerning transfinite surface interpolation as-
sume that either the ribbons, or at least the cross-derivatives
are given, and very little is written about how this informa-
tion can be extracted from a curve network. The reason for
this apparent lack of interest may be that at the time when
transfinite surface interpolation appeared with the Coons2

and Gregory1 patches, its main application was hole filling
and vertex blending, where additional cross-directional data
were readily available. This trend lived on, even after the
advent of curve network-based ideas, such as the Minimum
Variation Surfaces9.

There is a constant interest in multi-sided patches with G2

continuity, the first efforts dating back 25 years3. In partic-
ular, an extension of the Gregory patch similar to the one
described here was published by Hall and Mullineux4.

Special treatment of difficult configurations is also a re-
curring theme in the literature; most approaches use con-
cave domains7, 8, 6 to handle holes and extreme spatial struc-
tures, though we have very limited information concerning
the practical design potential and the quality of these shapes.

3. Computing Ribbons

In the course of curve network-based design, users cre-
ate and/or edit the boundary curves, while surfaces are
generated in an automatic manner. This means that cross-
derivatives and curvatures are also derived solely from the
curve network. Here we will deal only with generating
smooth connections, though in a real system the user may
want to create sharp edges, as well.

All continuity constraints are accomplished through defin-
ing “proper” ribbons, i.e., once we set the adjacent ribbons
G1 or G2 continuous, the respective transfinite surfaces will
inherit this property.

Two adjacent ribbons are G1 continuous if they share the
same sweep of normal vectors (called the normal fence)

Figure 1: Normal fence and mean curvature map

Figure 2: Normal curvature arcs and Gauss curvature map

along the common boundary. Figure 1 shows an example,
where the fence is rendered as a series of yellow lines. The
necessary condition for G1 continuity is that the first cross-
derivatives on both sides are perpendicular to the fence.

When we require G2 continuity between two surfaces, we
can make use of the Linkage Curve Theorem10, 5:

Two surfaces tangent along a C1-smooth linkage
curve are curvature continuous, if and only if at
every point of the linkage curve, their normal cur-
vature agrees for an arbitrary direction other than
the tangent of the linkage curve.

This practically means that if we have a particular directional
sweep along the common boundary, and the normal curva-
tures of the two ribbon surfaces in this direction are always
the same, then we have G2 continuity. Figure 2 shows an ex-
ample with the common normal curvatures shown as circular
arcs.

In the rest of this section, we will investigate how to de-
termine normals and curvatures from the curve network.
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3.1. Preliminaries

A ribbon is a four-sided side interpolant surface R(s,d),
where s is the side parameter, and d is the distance parame-
ter. The side parameter is in the interval [0,1] and runs along
the boundary curve. The distance parameter is defined in the
cross direction; it is zero on the boundary and increases as
we move away from it.

For a given n-sided patch, there is a loop of curves, Pi(si),
and we need to create the corresponding ribbons Ri(si,di),
i ∈ [1 . . .n]. The parameters (si,di) can also be regarded as
functions that map values from a common domain (see Sec-
tion 4.2). Note also that the indexing is circular, with 1 com-
ing after n and vice versa, and we have Pi−1(1) = Pi(0) for
all i.

3.2. Cross-derivatives

We assume that for each vertex of the network the crossing
curves define a local tangent plane. For each boundary Pi(si)
of a given patch, there exists a normal fence Ni(si) that in-
terpolates the normals at the related corners and minimizes
its rotation along the boundary. This is called a rotation-
minimizing frame or RMF. An exact (closed form) solution
of the underlying differential equation cannot be determined,
but approximations can be computed via a sequence of dis-
crete points14.

The cross-derivatives of the ribbons are defined as

Ti(si) :=
∂

∂di
Ri(si,0)

= α(si)Di(si)+β(si)
∂

∂si
Ri(si,0),

where α(si) and β(si) are scalar functions, and Di(si) rep-
resents a direction vector function, that is perpendicular to
Ni(si) everywhere. One trivial choice is the binormal

Di(si) = Ni(si)×
∂

∂si
Ri(si,0),

but other definitions are also possible.

The scalar functions satisfy end conditions at the corner
points (si = 0 and si = 1), but there are further degrees of
freedom to define these in order to optimize the shape of the
patch. For example, cross-derivatives at the middle of the
boundary (si = 0.5) can be prescribed by users for enhanced
control of the surface shape. Alternatively, these can be opti-
mized by fairing algorithms, which is the subject of ongoing
research.

3.3. Creating Ribbons

We will look at two types of side interpolants: linear ribbons,
that are ruled surfaces suitable for creating a G1-continuous
model, and parabolic ribbons, that are quadratic in the cross
direction, and rely on the computed common curvature val-
ues to ensure G2 continuity.

(0,0) (αl,0)

(l,h)

Figure 3: Setting the control points of a parabolic ribbon.

3.3.1. Linear Ribbons

Given a boundary curve Pi(si) and the corresponding cross-
derivative Ti(si), ribbon construction is straightforward:

Ri(si,di) = Pi(si)+diTi(si).

3.3.2. Parabolic Ribbons

Parabolic ribbons are also simple, having the form

Ri(si,di) = Pi(si)+diTi(si)+
1
2

diCi(si),

where Ci(si) is the second cross-derivative of the ribbon.

It is a natural choice to calculate the normal curvature in
the sweeping direction of the first cross-derivative, i.e., in
the plane spanned by Ti(si) and Ni(si) . Let us transform, for
ease of computation, the parabolic arc of Ri at a fixed ŝi into
a local coordinate system, where the first point is the origin,
and the tangent of the arc is the local x-axis. Then at a given
boundary point the equation of the parabola can be written
as a quadratic Bézier curve

Ri(ŝi,di) = B2
0(di) · (0,0)+B2

1(di) · (αl,0)+B2
2(di) · (l,h),

yielding κ= h
2α2l2 (see Figure 3). Assuming that the width of

the parabolic ribbon is the same as the corresponding linear
one, l is already defined. Then the prescribed curvature κ

can be set by means of α and h, which define the second and
third control points of the parabolic arc.

The choice of α gives us a degree of freedom. It may be
chosen as a constant. A better choice is to optimize α so
that the parabolic ribbon should minimally deviate from the
corresponding linear one. This can be formalized as(

αl− l
2

)2

+h2→min,

which leads to the depressed cubic equation

2α+16κ
2
α

3l2 = 1,

that can be solved by Cardano’s method.

4. Surface Creation

There are various transfinite surface schemes that can be ap-
plied to interpolate given ribbons. For a comparison, see a
review of the authors13. Here we will use Gregory patches,
as it is one of the simplest and most well-known methods.
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(a) Radial

(0,0) (1,0)(s,0)

(u,v)a b

(b) Sweep construction (c) Constrained sweep

Figure 4: Parameterizations

4.1. Ribbons

Gregory patches combine corner interpolants, so our first
task is to convert our side-based (linear or parabolic) ribbons
to corner-based surfaces. It is well-known from the classi-
cal theory of Boolean-sum surfaces2 that a correction patch
Qi,i−1 is needed to cancel out the unwanted terms coming
from the combination of the two side interpolants (see also
Section 4.3):

Ri,i−1(si,si−1) = Ri−1(si−1,si)+Ri(si,1− si−1)

− Qi,i−1(si,si−1),

where s j = s j(u,v) ( j ∈ [1 . . .n]) denote the side parameters
defined over the polygonal domain. This brings us to the next
topic: how to map the four-sided ribbon surfaces onto the n-
sided domain polygon, or inversely, how to determine the
local side parameters from a given (u,v) point.

4.2. Parameterization

The domain of a Gregory patch is an n-sided polygon in the
2D plane. Previous research13 shows that the use of irregular
polygons reflecting the spatial distribution of the boundary
curves generally improves the quality of transfinite surfaces.
In this paper, however, we will use regular domains for sim-
plicity’s sake. Experience shows that these behave well un-
less we have extreme boundary configurations with very un-
even side lengths or sudden curvature changes.

Let us determine the parameter si for the i-th side. Tradi-
tionally, Gregory patches are parameterized by radial sweep-
ing lines1 (Figure 4a), connecting the domain point in ques-
tion to the intersection of the extended polygon sides i− 1
and i + 1. This is suitable for G1 continuous surfaces, but
further differential properties are required for G2 continuity.
For each point on the i-th side, it is a necessary condition that
the parametric speed of the adjacent side parameters si−1and
si+1 is identical, i.e.,

∂si−1
∂w

=
∂si+1
∂w

,

where w is an arbitrary sweeping direction. (See also the
proof of continuity given in the Appendix.)

The above property can be satisfied, if we create the
sweeping lines using Hermite polynomials. Without loss of
generality, let the base edge be a segment from (0,0) to
(1,0), a and b edge vectors associated with sides i− 1 and
i+1, respectively, and (u,v) the point to be mapped, see Fig-
ure 4b. Then we can construct the equation

(u,v) = (s,0)+d [a ·H(s)+b ·H(1− s)] ,

where H(s) = 2s3−3s2 +1, and s and d are unknown. This
leads to a fourth-degree equation in s:

c4s4 + c3s3 + c2s2 + c1s+ c0 = 0,

where the coefficients are

c4 =
2
v
(av−bv),

c3 = 2(au−bu)+
1
v
(2u+3)(bv−av),

c2 = 3(bu−au)− u
v

3(bv−av),

c1 =
1
v

av,

c0 = au− u
v

av,

with a = (au,av) and b = (bu,bv).

This does not pose any difficulty for real-time computa-
tion, as efficient algorithms exist for solving fourth-degree
polynomial equations11, and the values for a given resolu-
tion can be cached. For the result, see Figure 4c. Note, that
now the blue sweeplines of side i−1 and the red sweeplines
of side i+1 at the bottom are identical in a differential sense.

4.3. Correction Terms

Let us investigate the partial derivatives of two ribbons meet-
ing at a common corner point. We need a single corner inter-
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Figure 5: Blend function with m = 2 (left) and m = 3 (right)

polant, but the partial derivatives are not necessarily identi-
cal, which may pose a problem called twist incompatibility.
Let us introduce the notation ti = 1− si−1. We would need

∂
p+q

∂sp
i ∂tq

i
Ri(0,0) =

∂
p+q

∂tq
i ∂sp

i
Ri−1(1,0)

=: Wp,q p,q ∈ {0,1,2}.

Every curve network satisfies this equation for p = q = 0,
as the boundaries meet at a fixed corner point. It is also nat-
ural to require that the equation holds for p = 0, q = 1 and
p = 1, q = 0, constraining the first cross-derivative at the
boundary to the tangent of the neighboring curve. Most net-
works do not go beyond this point — and even if the curves
match a common surface curvature5, it only handles the ad-
ditional cases p = 2, q = 0 and p = 0, q = 2, as well as
p = q = 1.

When some partial derivatives of the ribbons are not com-
patible, we need to apply Gregory’s rational twists. These
replace the constant vectors Wp,q by rational expressions
combining the two parametric variables (see below). In our
current research, we assume that the boundary curves match
only in position, and for all other terms rational expressions
are used. This may create another layer of flexibility for
shape optimization.

The correction patch is defined as

Qi,i−1(si, ti) = Pi(0)+ siW1,0 + tiW0,1 + sitiW1,1

+
1
2

s2
i W2,0 +

1
2

t2
i W0,2 +

1
2

s2
i tiW2,1

+
1
2

sit
2
i W1,2 +

1
4

s2
i t2

i W2,2,

where each W is a rational function of si and ti. The com-
putation of these is a fairly straightforward generalization of
the classical Gregory twists15. As an illustration, we show
two such terms, the remaining ones are similar:

W1,0(si, ti) =
s2

i Ti−1(1)+ t3
i

∂

∂si
Pi(0)

s2
i + t3

i
,

W1,2(si, ti) =
s2

i
∂

2

∂t2
i

Ti−1(1)+ ti ∂

∂si
Ci(0)

s2
i + ti

.

Substituting 0 for either si or ti eliminates one of the con-
flicting partial derivatives.

4.4. Blending Functions

Every transfinite surface scheme combines individual inter-
polants by special blending functions that ensure the re-
quired interpolation properties and gradually vanish as we
move towards the center of the domain. Gregory patches
consist of corner interpolants, so we need corner blends that
interpolate the corner points, gradually fade on the adjacent
sides, and vanish on all other sides.

For each (u,v) point in the polygonal domain, we de-
termine an n-tuple of distance values ∆i, computed as the
perpendicular distances from the i-th side. Let Di1...ik =

∏ j /∈{i1...ik}∆
m
j , then the corner blend is defined as

Bi,i−1(u,v) =
Di,i−1

∑ j D j, j−1

(
=

1/(∆i∆i−1)
m

∑ j 1/(∆ j∆ j−1)m

)
.

This function satisfies all requirements — it yields 1 at the
(i−1, i) corner, ensures a “gradual” 1→ 0 transition on sides
i− 1 and i as we move away from the corner, and vanishes
on all the remaining sides.

The exponent m controls how rapidly the contribution of a
single ribbon changes, compare the two images in Figure 5.
It also ensures that the resulting surface retains the (m−1)-th
derivatives of the ribbons, so we can use m = 2 for linear
ribbons, and m = 3 for parabolic ribbons to achieve G1 and
G2 continuity, respectively.

4.5. Surface Equation

Given a curve network with side interpolants, now we can
create all constituents — the corner interpolants, the domain

(a) Linear ribbons (G1)

(b) Parabolic ribbons (G2)

Figure 6: Connectivity between Gregory patches
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(a) Concave angle (b) Highly curved boundary (c) Internal loop

Figure 7: Improved surfacing using connection curves.

polygon, the parameterization and the blending functions.
Putting these together, we arrive at

S(u,v) =
n

∑
i=1

Ri,i−1(si(u,v),si−1(u,v))Bi,i−1(u,v).

5. Examples

Figure 6 shows two adjacent patches with linear vs.
parabolic ribbons. In this example, the target curvatures were
computed by averaging those on the left and right sides. It

Figure 8: Vertex blend with three master surfaces

can be seen, that with parabolic ribbons the curvatures nicely
match, and the isophote strips smoothly change across the
shared boundary, showing G2 continuity.

In the rest of this section, we present some applications of
parabolic ribbons.

5.1. Difficult Curve Network Configurations

While most of the time G1 transfinite surface interpola-
tion produces a collection of smoothly connected convex
patches, there are certain cases, where in order to handle
complex configurations or avoid shape artifacts, we need to
insert “artificial” connection curves into the network:

• curve loops with a concave angle,
• avoiding distortions due to highly curved boundaries,
• connect internal loops (holes).

Examples are shown in Figure 7. In these cases, first we in-
sert connection curves, then create G1 patches. After taking
the average of the curvatures, we compute parabolic ribbons
and regenerate the patches now with curvature continuity.
These composite patches remain smooth internally and the
seamlines are invisible along the connection curves. (Note,
that generally connection curves are automatically gener-
ated, and remain hidden from the users.)

5.2. Master-Slave constructions

There are various methods to compute a target curvature
function along a given curve. The most straightforward solu-
tion is averaging the curvatures of two adjacent G1 patches,
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Figure 9: Deviation from the mesh using linear (left) and parabolic (right) ribbons

as before. Another typical situation is, when the curvature
of a master patch needs to be retained. Then these curva-
tures are propagated to the surrounding slave patches using
parabolic ribbons. Such an example is shown in Figure 8,
where a setback vertex blend was created, satisfying curva-
ture continuity joining three edge blends, i.e., we have three
master surfaces, and one slave in the middle.

5.3. Mesh Approximation

Creating a concise representation of a mesh is an impor-
tant task in general topology surface modeling. First, a net-
work of curves is drawn on the mesh, which also defines a
multi-sided patch structure. By deducing boundary curves
and cross-derivatives from the mesh, transfinite surfaces can
nicely approximate the data points in the interior. Using lo-
cally estimated normal vectors we can create normal fences
and linear ribbons for G1 patches. If we estimate local curva-
tures along the boundaries, as well, this makes it possible to
create parabolic ribbons and G2 patches, which will produce
smoother and more accurate surface models (see Figure 9).

Conclusion

We have discussed an approach for G2 transfinite surface
interpolation combining parabolic ribbons. These ribbons
match curvatures that are associated with the edges of a
general topology curve network. The formulation is based
on corner interpolants and a special sweepline parameteri-
zation. Continuity issues and the computation of linear and
parabolic ribbons were explained in details. A few applica-
tions where G2 ribbons are needed have also been presented.

There are several open issues in transfinite surface inter-
polation for future research. Ribbon creation is one of the
fundamental ones, as they are constrained, but not uniquely
defined. We are currently investigating ribbon optimization
approaches for surface fairing and obtaining the best possi-
ble transfinite approximations over triangular meshes.
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Appendix A: Proof of Continuity

We will provide here a short proof that Gregory patches with match-
ing parabolic ribbons are indeed G2 continuous. We will prove a
stronger statement: the modified Gregory patches described in the
paper interpolate their ribbons with C2 continuity.

To save space, arguments of functions are omitted, when this can-
not cause any misunderstanding. From here onwards, we look at a
point on the ith side, i.e., si−1 = 1 and si+1 = 0. In this situation, the
blending function has several important properties12, which we list
here without proof:

Bi,i−1 +Bi+1,i = 1, (1)

∂

∂w
B j, j−1 = 0, j /∈ {i, i+1}, (2)

∂2

∂w2
B j, j−1 = 0, j /∈ {i, i+1}, (3)

w being an arbitrary direction. From the above it also follows that

∂

∂w
(B j, j−1 +B j+1, j) = 0, j /∈ {i−1, i+1}, (4)

∂2

∂w2
(B j, j−1 +B j+1, j) = 0, j /∈ {i−1, i+1}. (5)

C0 Continuity

This is very straightforward, using property (1) of the blend func-
tions:

S = Ri,i−1Bi,i−1 +Ri+1,iBi+1,i

= Ri(si,0)(Bi,i−1 +Bi+1,i) = Ri(si,0).

C1 Continuity

As before, most of the equation vanishes, leaving

∂

∂w
S =

[
∂

∂si+1
Ri+1,i

∂si+1

∂w
+

∂

∂si
Ri+1,i

∂si

∂w

]
Bi+1,i

+

[
∂

∂si
Ri,i−1

∂si

∂w
+

∂

∂si−1
Ri,i−1

∂si−1

∂w

]
Bi,i−1

+

[
Ri+1,i

∂

∂w
Bi+1,i +Ri,i−1

∂

∂w
Bi,i−1

]
.

Since Ri+1,i = Ri,i−1, we can use property (4) to eliminate the last
term. After some calculation, we arrive at

∂

∂w
S = P′i (si)

∂si

∂w
+Ti(si)

[
Bi+1,i

∂si+1

∂w
+Bi,i−1

∂si−1

∂w

]
,

which is a combination of the ribbon’s side- and cross-derivatives,
proving G1 continuity. Using the parameterization constraint
∂si+1

∂w =
∂si−1

∂w , we get back the ribbon’s first derivative, so we have
proved C1 continuity.

C2 Continuity

In a similar vein, we can eliminate a large part of the equation, after
which the following remains:

∂2

∂w
S = 2

[
∂

∂si+1
Ri+1,i

∂si+1

∂w
+

∂

∂si
Ri+1,i

∂si

∂w

]
∂

∂w
Bi+1,i

+ 2
[

∂

∂si
Ri,i−1

∂si

∂w
+

∂

∂si−1
Ri,i−1

∂si−1

∂w

]
∂

∂w
Bi,i−1

+

[
∂2

∂s2
i+1

Ri+1,i
∂s2

i+1

∂w2
+2

∂2

∂si+1si
Ri+1,i

∂si

∂w
∂si+1

∂w

+
∂2

∂s2
i

Ri+1,i
∂s2

i

∂w2

]
Bi+1,i +

[
∂2

∂s2
i

Ri,i−1
∂s2

i

∂w2

+ 2
∂2

∂sisi−1
Ri,i−1

∂si−1

∂w
∂si

∂w
+

∂2

∂s2
i−1

Ri,i−1
∂s2

i−1

∂w2

]
Bi,i−1

+

[
Ri+1,i

∂2

∂w2
Bi+1,i +Ri,i−1

∂2

∂w2
Bi,i−1

]
.

The last term vanishes once again, due to property (5). This leads to

∂2

∂w2
S = 2Ti(si)

[
∂

∂w
Bi+1,i

∂si+1

∂w
+

∂

∂w
Bi,i−1

∂si−1

∂w

]
+ P′′i (si)

∂s2
i

∂w2
+2T ′i (si)

∂si

∂w

[
Bi+1,i

∂si+1

∂w
+Bi,i−1

∂si−1

∂w

]
+ Ci(si)

[
Bi+1,i

∂s2
i+1

∂w2
+Bi,i−1

∂s2
i−1

∂w2

]
.

Applying the parameterization constraint, we get

∂2

∂w2
S = P′′i (si)

∂s2
i

∂w2
+2T ′i (si)

∂si

∂w
∂di

∂w
+Ci(si)

∂d2
i

∂w2
,

which is the second derivative of the ribbon, so we have proved C2

continuity.


