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Abstract
In two recent publications we have introduced multi-sided generalizations of Bézier and B-spline surface patches
over curved, multiply connected domains. The schemes combine bi-parametric ribbon surfaces; the control points
are weighted by Bernstein and/or B-spline basis functions multiplied by rational correction terms that ensure
interpolation of the ribbon data. In this paper we propose a new method for setting these rational terms by applying
an alternative surface evaluation scheme that algebraically retains the patch interior when boundary ribbons are
refined via degree elevation or knot insertion.

1. Introduction

The representation of general, multi-sided surfaces is a
fundamental problem in computer-aided geometric design.
Such surfaces are needed for designing complex free-form
objects, creating smooth transitions that connect a set of
given surfaces and reconstructing irregular shapes from
point clouds. We have recently proposed a family of gen-
uinely multi-sided parametric surface patches that combine
arbitrary interpolant surfaces (ribbons) given in Bézier or B-
spline form – see the Generalized Bézier2 (GB) and Gener-
alized B-spline1 (GBS) patches.

These patches exactly interpolate boundaries and cross
derivatives, and can smoothly connect to adjacent tensor-
product surfaces. They are defined over a multiply con-
nected, parametric domain with curved boundaries, and thus
can interpolate hole loops in the interior of the surfaces. In
the equation of these surfaces, the control points of the con-
stituting ribbons are multiplied by rational correction terms,
the choice of which is an essential part of the surface defini-
tion, and is the subject of this paper.

In order to provide additional degrees of design freedom
to the patches, the individual ribbons might need to be re-
fined via degree elevation (GB) or knot insertion (GBS). In
our former constructions the boundary constraints were re-
produced, but the interior of the patch – due to the rational
terms – slightly changed. Our new construction overcomes
this deficiency: it preserves the shape interior and provides a
more even curvature distribution.

It should be noted that another exact refinement approach
was also published recently,3 where the rational blending
functions were treated as part of the control points during the
refinement process, retaining the original patch. In compari-
son, our proposed method is a new, arguably better surface.

In Section 2 we will recall the original patch formulae. In
Section 3, after introducing the notion of base patches and
reformulating curve and surface equations using displace-
ment vectors, we explain the new construction for degree-
elevated G1 Bézier patches. This is generalized in a fairly
straightforward way for patches with G2 ribbons and for
patches with cubic B-spline boundaries (Section 4). Finally
in Section 5 a few examples will illustrate the new scheme.

2. Generalized Bézier patches revisited

First we recall the formulation of the Generalized Bézier
patch, defined by means of n Bézier ribbon surfaces that
determine positions and cross-derivatives along its surface
boundaries (see Figure 1). The i-th ribbon Ri is defined by
(di +1)× (ei +1) control points, given as

Ri(si,hi) =
di

∑
j=0

ei

∑
k=0

Ci
j,kBdi

j (si)B
ei
k (hi). (1)

Local ribbon parameters along and across the boundary are
denoted by si,hi ∈ [0,1]. The j-th control point in the k-th
row Ci

j,k is multiplied by related Bernstein polynomials of
the local parameters. Degrees in the longitudinal and cross
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Figure 1: Ribbons of a GB patch showing some of the con-
trol point indices.

directions (di and ei) can be chosen arbitrarily for each rib-
bon.

The GB patch is defined over a curved domain in the (u,v)
plane, and the points of the domain are associated with lo-
cal bivariate parameters of each ribbon. The side parameter
si = si(u,v) varies linearly on side i between 0 and 1; the dis-
tance parameter hi = hi(u,v) vanishes on side i and increases
monotonically within the domain, eventually reaching 1 on
the distant sides ( j ̸= i−1, i, i+1). Details of curved domain
generation and parameterization can be found in the related
papers.

When we formulate the multi-sided patch equation, the
control points of ribbon Ri are retained, but the blending
functions need to be modified. We are going to sum up
weighted ribbons R∗

i (see Eqs. (6) and (7) later), where in
the cross direction we apply Bernstein functions of degree
2ei+1 (i) to ensure positional and cross-derivative interpola-
tion with Gei continuity on side i and (ii) force the weighted
ribbon R∗

i to disappear on the distant sides of the domain
(l ̸= i−1, i, i+1) in both positional and differential sense.

R∗
i (si,hi) =

di

∑
j=0

ei

∑
k=0

µi
j(hi)·Ci

j,kBdi
j (si)B

2ei+1
k (hi). (2)

Each control point is multiplied by a rational correction term
µi

j(hi) to ensure the interpolation property of the patch. Here
hi is an abbreviation for {hi−1,hi,hi+1}, i.e., the left and
right distance parameters hi−1 and hi+1 need to be used, as
well. The correction terms µi

j(hi) must guarantee that ribbon
Ri is reproduced on the i-th side (hi = 0), and R∗

i vanishes
on the neighboring sides i−1 and i+1. To satisfy the above
properties, µi

j(hi) can be set for the “left and right” corners

of the ribbon as

α
i =

hei+1
i−1

hei+1
i−1 +hei+1

i

, j = 0, . . . ,ei, (3)

β
i =

hei+1
i+1

hei+1
i+1 +hei+1

i

, j = di − ei, . . . ,di; (4)

these hold for all k. As we will point out in the next sec-
tion, the choice of the remaining middle correction terms is
a delicate issue.

Finally, the multi-sided patch S(u,v) is defined as the sum
of n weighted ribbons. In order to ensure the convex combi-
nation property there are two possible solutions. (i) Compute
the normalization sum, i.e., the sum of all corrected blending
functions:

BΣ(u,v) =
n

∑
i=1

di

∑
j=0

ei

∑
k=0

µi
j(hi)B

di
j (si)B

2ei+1
k (hi), (5)

and divide the patch equation by this sum

S(u,v) = 1
BΣ(u,v)

·
n

∑
i=1

R∗
i (si,hi). (6)

(ii) Compute the weight deficiency as 1−BΣ(u,v) and as-
sign this blending function to either a single “central” control
point C0 or an arbitrary “central surface” C0(u,v) defined
over the same domain. Then

S(u,v) =
n

∑
i=1

R∗
i (si,hi)+C0(1−BΣ(u,v)). (7)

The latter solution might be beneficial when we want to
modify the shape of the patch interior, see e.g. Figure 4.

3. Degree elevation and the displacement-based
evaluation

We are going to present a new variant of Generalized Bézier
patches, but – for simplicity’s sake – we show our concept
by means of a degree-d (d ≥ 3) Bézier curve r(s), being
elevated to degree D. The new control points CD

i are linear
combinations of the Cd

i -s, and the curve remains unchanged,
i.e.,

r(s) =
d

∑
j=0

Cd
j Bd

j (s) =
D

∑
j=0

CD
j BD

j (s). (8)

Now let us take a weighted Bézier curve, where the con-
trol points are multiplied by some additional scalar weights
µd

j . Assume that we have fixed weights for the first two and
the last two control points, denoted by α and β, respectively,
and we have freedom to set the remaining weights in the
middle

{
µD

j

}
j=2...D−2

. We would like to degree-elevate the

original control points by the standard rules and obtain an
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Figure 2: Bézier curve: degree elevated base curve + dis-
placements.

identical equation. In general this does not hold:

r∗(s) =
d

∑
j=0

µd
j Cd

j Bd
j (s) ̸=

D

∑
j=0

µD
j CD

j BD
j (s). (9)

The formerly proposed methods of (i) setting the mid-
weights to constant 1 (mid-1 scheme) or (ii) applying a lin-
ear combination2 of α and β are not satisfactory. For ex-
ample, let us elevate from cubic (d = 3), µd =[α,α,β,β]
to quartic (D = 4), and try either µD = [α,α,1,β,β] or
µD = [α,α, α+β

2 ,β,β]. As we degree-elevate, the left side
of the above equation is multiplied by [(1 − s) + s] lead-
ing to the central term 1

2 (αC3
1 +βC3

2), which is not equal to
µ4

2C4
2 = µ4

2 · 1
2 (C

3
1 +C3

2) for any choice of µ4
2, unless α = β.

For solving this problem, first we describe an alternative
approach that allows correct degree elevation of weighted
curves. The key idea is to reformulate the equation of
Bézier curves using displacements over degree-reduced cu-
bic base curves, see Figure 2. Take an arbitrary degree-
D Bézier curve r(s) with control points

{
CD

j

}
j=0...D

(red

curve, D = 6), then construct a corresponding cubic base
curve with control points

{
Q3

j

}
j=0...3

, determined by

the endpoint positions and first derivatives (green curve).
Next degree-elevate the base curve, obtaining control points{

QD
j

}
j=0...D

(blue curve), and compute displacement vec-

tors as
{

WD
j = CD

j −QD
j

}
j=0...D

. By the above definition

of the base curve WD
0 =WD

1 = WD
D−1= WD

D = 0, and thus

r(s) =
D

∑
j=0

(
QD

j +WD
j

)
BD

j (s) (10)

=
D

∑
j=0

QD
j BD

j (s)+
D

∑
j=0

WD
j BD

j (s) (11)

=
3

∑
j=0

Q3
j B

3
j(s)+

D−2

∑
j=2

WD
j BD

j (s). (12)

We can perform the same reformulation on a degree-
elevated weighted curve r∗(s):

r∗(s) =
3

∑
j=0

{
α, j = 0,1
β, j = 2,3

}
Q3

j B
3
j(s)+

D−2

∑
j=2

WD
j BD

j (s).

(13)

We have separated the weighted terms of the base curve
from those terms that arise due to degree elevation, yield-
ing an expression that defines a curve identical to the origi-
nal one when there are no displacements. The WD

j displace-
ments are represented by vectors and thus do not change the
normalization sum. Formally, the control points CD

j and QD
j

appearing in the equation for WD
j are multiplied by the same

blending function BD
j (s) with opposite signs, which cancel

each other. The weighted terms associated only with the base
curve are independent of degree D.

We apply the same displacement-based evaluation to the
weighted G1 ribbons of the multi-sided GB patch:

R∗
i (si,hi) =

1

∑
k=0

(
3

∑
j=0

{
α

i(hi), j = 0,1
β

i(hi), j = 2,3

}
Q3

j,kB3
j(si)+

di−2

∑
j=2

Wd
j,kBd

j (si)

)
di−2

∑
j=2

Wd
j,kBd

j (si) (14)

In our context, the equation naturally reproduces all
degree-elevated ribbons on the boundary, where hi = 0 and
α(hi) = 1 and β(hi) = 1. Since the weighted ribbons and
the sum of the weighted blending functions are retained, the
whole patch remains identical. In fact, for a fixed domain
and local parameterization, the cubic base patch and the cor-
responding normalization term (and weight deficiency) are
uniquely determined, being independent of the degrees of
the ribbons:

BΣ(u,v) =
n

∑
i=1

3

∑
j=0

1

∑
k=0

{
α

i(hi), j = 0,1
β

i(hi), j = 2,3

}
B3

j(si)B
3
k(hi).

(15)

The above idea can easily be generalized for GB patches
with G2 continuity: then the boundaries need to be degree
5 or higher, with three rows of control points (ei = 2) and
quintic Bernstein functions in the cross direction. The base
patch will be composed of ribbons with quintic boundaries,
and at the corners the α

i and β
i weights will be applied to

3×3 instead of 2×2 control points.

4. Generalized B-spline patches revisited

GBS patches are similar to GB patches, having B-spline
boundaries in the longitudinal direction.1 The ribbons have
(di + 1)× (ei + 1) control points, multiplied by a ‘hybrid’
product of basis functions Nξi,pi

j (si)B
ei
k (hi), where Nξi,pi

j are
B-spline functions defined over a knot vector ξi with degree
pi. The degrees, the knot vectors and the number of cross-
derivatives can be different for each B-spline ribbon. In all
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Figure 3: Degree elevation (showing curvatures). Left: cubic boundaries, middle: mid-1 changes the shape, right: displacement
retains the shape.

equations for GB patches in Sections 2 and 3 the Bernstein
basis functions can be replaced by B-splines in the longitu-
dinal direction.

Our problem is the same as before: retain the weighted
ribbons – and thus the multi-sided patch – when new
knots are inserted. The solution is also similar: define
weighted B-spline ribbons by creating a base patch and
applying displacements. As an example, we create a cu-
bic B-spline ribbon with G1 constraints at the corners.
The control points are denoted by

{
C j,k

}
j=0...d;k=0,1. We

deal with clamped B-splines, so the knot vector is ξi =
[0,0,0,0,ν1, ...,νKi,1,1,1,1], where Ki denotes the number
of internal knots and Ki = di −3. We remove all the internal
knots, preserving the first derivatives at the ends; this yields a
cubic base ribbon with control points

{
Q j,k

}
j=0...3;k=0,1 and

knot vector ξ̂i. After reinserting the internal knots, we cre-
ate an identical ribbon with control points

{
Q∗

j,k

}
and dis-

placement vectors
{

W j,k = C j,k −Q∗
j,k

}
, where j = 0 . . .d

and k = 0,1. In this way we separate the weighted corner
quantities from the displacement term in the middle and the
weighted ribbons will remain intact during knot insertion,
i.e.,

R∗
i (si,hi) =

1

∑
k=0

(
3

∑
j=0

{
α

i(hi), j = 0,1
β

i(hi), j = 2,3

}
Qi

j,kNξi,3
j (si)+

Ki

∑
j=1

Wi
j,kN ξ̂i,3

j (si)

)
B3

k(hi). (16)

The construction for G2 GBS patches with cubic B-spline
boundaries is somewhat more complicated, as we need at
least 6 degrees of freedom in the longitudinal direction to
separate the first and second derivative constraints at the two
corners. This will lead to a base patch where each boundary
has three segments. Finally the actual knots can be reinserted
and the displacement vectors computed accordingly.

As it was discussed in the paper,1 GBS patches can also
handle hole loops given by periodic B-spline ribbons, us-
ing a special parameterization. The surface equations in this

Figure 4: Interior shape editing (mean curvature map).

case are also computed as the sum of weighted ribbons. But
as there are no correction terms for periodic ribbons, knot
insertions trivially preserve the full multi-sided patch.

5. Discussion

To ensure an invariable patch interior after degree elevation
or knot insertion was a theoretical challenge for this sort of
multi-sided patches. In Figure 3 a 6-sided GB patch can be
seen (left); we have degree-elevated various ribbons and the
shape has slightly changed (middle), but the image on the
right shows that the displacement-based evaluation keeps the
shape unchanged. We remark that in practical situations the
user generally refines the control structure in order to re-
locate the control points or compute some better approxi-
mation, so the patch interior is likely to change in all these
events.

We have found that formulating the weighted ribbons by
displacements is beneficial for the overall shape due to a
more balanced curvature distribution. This is mainly due to
the normalization term/weight deficiency functions defined
over the curved domain. Cubic base patches produce natu-
ral weight deficiencies with minimal oscillation, while the
previous weighting methods often produced uneven distri-
butions with dominantly negative values, where the sum of
the weighted blending functions exceeded 1. The differences
in the final surface are minor when using normalization (6),
but may become important when the weight deficiency is
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utilized for adjusting the interior – see a simple example in
Figure 4.

Figure 5 shows an example, where we compare a GBS
patch by the old method (mid-1) and the new displacement-
based formulation. It is not easy to distinguish between the
two surfaces, but the related weight deficiency functions –
shown by contoured values elevated over the curved domain
– significantly differ. Another example of a multiply con-
nected GBS patch is shown in Figure 6, where similar obser-
vations can be made. We remark that the use of displacement
vectors yields an affine combination of the original control
points of the ribbons.

We also note that the displacement scheme reproduces
the classical four-sided Coons patch using the given ribbons
over a rectangular domain.

Conclusion

We have modified the equation of generalized Bézier (GB)
and B-spline (GBS) patches to ensure invariance when the
ribbons are refined by degree elevation or knot insertion.
The new formula is also beneficial concerning the normal-
ization term/weight deficiency functions, which are inherent
features of this sort of multi-sided patches.
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