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Abstract
Polyhedral design is an efficient technology to create complex free-form shapes by smoothing control polyhedra.
Several well-known approaches exist, including recursive subdivision and direct algorithms. In this paper, we in-
troduce a direct method where a collection of smoothly connected, multi-sided Bézier patches are stitched together.
While traditional methods are based on control polyhedra with only convex faces, our approach is capable to han-
dle faces with concave angles and multiple holes, using a special, topology preserving patchwork structure. The
main steps of the algorithms: (i) compute an auxiliary polyhedron, (ii) define a general topology curve network
and derive interior control points for generalized Bézier patches, (iii) compute the surfaces and (iv) adjust shape
parameters, if needed. Several test examples will be given to demonstrate the capabilities of this new method.
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1. Introduction

Polyhedral design is an important 3D technology that is
widely applied in various areas of engineering, medicine,
animation, etc. for creating complex free-form shapes. The
basic idea is that nice, intuitive shapes can be obtained by
smoothing a control polyhedron. When its control points are
relocated, the model will also change in a natural and pre-
dictable manner.

Approaches can be distinguished by the algorithms how
the polyhedron is transformed into a collection of smoothly
connected free-form surfaces (Figure 1). While recursive
subdivision methods produce a sequence of refined polyhe-
dra that converges to a limit surface, direct methods create
patchworks that interpolate curve networks composed ex-
plicitly from the polyhedron. The majority of direct methods
apply quadrilaterals or convex multi-sided surfaces, these
being the most deeply studied, standard representations in
CAGD. As it will be discussed later, providing models with
convex faces can only be achieved by often inconvenient and
artificial subdividing operations.

A recently published multi-sided Bézier surface represen-
tation over curved domains (called the CD-GB patch) is ca-
pable of handling faces with concave angles and interior
holes (see Várady et al.17). This makes it possible to get rid
of convex subdivision and build a patchwork that preserves

the topological structure of the control polyhedron. In our
paper we describe such an approach, which – according to
our best knowledge – is the first of its kind. Currently, it en-
sures G1 continuity only. After briefly presenting prior work
(Section 2), we analyze why traditional methods may fail
without convex division (Section 3). Then we describe the
basic steps of the algorithm in Section 4, followed by the
creation of auxiliary polyhedra (Section 5), curve networks
and interior control points for the patches (Section 6). The
equation of the generalized Bézier patches will be described
in Section 7. Finally, by means of a few examples we demon-
strate the capabilities of our method (Section 8). Suggestions
for future work conclude the paper (Section 9).

(Note: this paper is a short version of a publication, being
in preparation.)

2. Previous work

Polyhedral design is an essential chapter in Computer Aided
Geometric Design4 to model general topology surfaces that
may have arbitrary n-sided faces, and vertices with arbitrary
valency. The literature is dominated by recursive subdivision
methods; the most influential and popular approaches were
suggested by Doo–Sabin3 and Catmull–Clark.1 These pro-
duce a sequence of refined polyhedra that nicely converges
to a smooth limit surface. It is well-known that these surfaces
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(a) Doo–Sabin (b) Catmull–Clark

(c) Dual topology (d) Topology preserving

Figure 1: Different polyhedral design methods

define piecewise bi-quadratic or bi-cubic B-spline patches
over regular subsets of the control points, respectively. At
the same time, it is a hard problem to obtain an explicit sur-
face representations at the extraordinary points, see a recent
comprehensive survey by Peters.12 Specific solutions include
that of Loop and Schaefer9 using S-patches, Hettinga and
Kosinka5 using generalized B-spline patches, and an exten-
sive series of guiding surface based schemes, see e.g. recent
publications by Karciauskas and Peters.7, 6

Direct polyhedral methods – often called surface splines
– emerged in the early 90s by various authors (see J. Peters’
works11). The main problems to be solved included the split
of n-sided patches into standard quadrilateral patches and
ensuring Gn continuity with various constraints. This prob-
lem is still an area of active research.

An alternative concept is to replace a collection of quadri-
lateral patches by genuine multi-sided patches, see e.g. Mal-
raison’s survey.10 In this case we do not need central split-
ting, and there are no internal discontinuities, but another
deficiency emerges: these multi-sided patches cannot be
generally represented in standard data formats. One fam-
ily of multi-sided polyhedral design was proposed by Loop
and DeRose8 using S-patches. Rockwood applied transfinite
patches.13 The use of convex, multi-sided Bézier patches
were suggested by Szörfi.15 We remark that implicit multi-
sided patches can also be used for polyhedral design, see a
recent paper by Sipos et al.14

The majority of direct constructions heavily exploits the
convex nature of the constituting surfaces. These are typi-
cally built over a dual topological graph, where the patch
boundaries are constructed by connecting the centroids of
adjacent faces. Unfortunately, this often forces an uncom-
fortable preprocessing related to the initial polyhedron, i.e.,

the faces with concave angles and internal hole loops must
be subdivided in order to produce sensible convex faces.

The novelty of our topology preserving approach elim-
inates this inconvenience. The use of generalized Bézier
patches17 makes it possible to create a one-to-one correspon-
dence between the topology of the patchwork and faces of
the control polyhedron. In the next section we will point out
its benefits when compared with traditional methods.

3. Problems of convex division

As discussed earlier, for the majority of traditional methods,
including recursive subdivision and dual topology schemes,
it is compulsory to insert artificial subdividing edges into the
control polyhedron. While in many cases this is straightfor-
ward, in other cases difficulties may emerge, as follows.

The Doo–Sabin method and the dual topology algorithms
interpolate the centroid of the faces. The first step of the
Catmull–Clark scheme also starts from the centroids of the
faces. For concave or multi-connected faces the centroid
may fall outside the face, which may cause artefacts. In Fig-
ure 2 simple examples (a, b, c, d) are shown to illustrate what
would happen without inserting extra edges. Fortunately, the
position of the centroid is irrelevant for the topology preserv-
ing method (e, f).

It can be a challenging task to compute a natural convex
split for a complex face with holes; it is even more compli-
cated to produce a fully quadrangular subdivision. Imagine
what would be the best subdivision for our test object in Fig-
ure 16. Splitting complex faces may lead to splitting some
edges (T-nodes), which may force further superfluous sub-
divisions on the adjacent faces. In Figure 3 we subdivided a
concave T-shape face (black lines) and thus the bottom face
(red lines) needed to be split into three subfaces. The exam-
ple in Figure 4 shows that even relatively simple faces can be
subdivided in various ways: (b) shows a set of convex faces
and (c) quads only; in these cases T-nodes are generated and
the side faces will be split, as well. Finally, (d) shows a sub-
division without T-nodes, but several artificial subfaces were
created. The topology preserving approach (a) avoids split-
ting and the insertion of T-nodes, and it defines a simple,
unambiguous structure.

4. The algorithm and the flowchart of the process

The basic steps of the algorithm are depicted in Figure 5. We
start from a general topology control polyhedron that may
have faces with concave angles and interior hole loops.

1. First, we create an auxiliary polyhedron, which will
be constructed by shrinking the original faces (FACE-
faces), and chamfering the edges and the vertices, yield-
ing (EDGE-faces) and (VERTEX-faces), respectively.
(Hereinafter, we prefer to use the term facet instead of
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(a) Catmull–Clark (b) Catmull–Clark

(c) Dual topology (d) Dual topology

(e) Topology preserving (f) Topology preserving

Figure 2: Failures (a, b, c, d) are due to lack of subdivisions

Figure 3: Extra edges inserted

(a) No subdivision (b) Convex faces with T-nodes

(c) Quad faces with T-nodes (d) Convex faces, no T-nodes

Figure 4: Subdivision for a face with a hole

the VERTEX-face.) This operation produces a polyhe-
dron, somewhat similar to the Doo–Sabin first subdivi-
sion step. There are various parameters to adjust its shape,
e.g. adjusting the depth of the edge-chamfer will indi-
rectly tweak the depth of the vertex chamfer, and accord-
ingly the curvatures of the final shape.

2. Next we construct a free-form curve network, where the
individual curves are cubic Bézier curves. Each curve
smoothly connects to the centroids of two adjacent facets.
These edges correspond to the original edges of the con-
trol polyhedron, and constitute the boundary loops of the
multi-sided patches, so we do reproduce the topology.
There is another shape parameter to set the fullness of
these curves, while restraining the tangential constraints
at the ends.

3. For generating CD-GB patches, we need to determine
further interior control points that will define the cross-
derivatives of the patches for each boundary. These are
the twist control points, placed initially into the vertices
of the facets. We generally reposition these twist vectors
in order to ensure G1 continuity between the opposite
boundary ribbons using the well-known direction blend
method2.

4. Now we are ready to compute the CD-GB patches; first
the curved domain, and then a parameterization associ-
ated with each boundary. Once this is completed we can
evaluate any point in the domain and map it to 3D, as
defined by the parametric equation of the CD-GB patch.
The individual patches are stitched together to form a
global patchwork that smoothly mimics the shape of the
given control polyhedron.

In the next sections we provide further details about the al-
gorithm.
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Figure 5: The flowchart of the algorithm

(a) Concave (b) With inner loop

Figure 6: Shrunken faces

5. Auxiliary polyhedra

As mentioned earlier, our algorithm first performs a similar
operation like the refinement step of the Doo–Sabin subdivi-
sion. This generates a ‘shrunken polyhedron’ – with our ter-
minology auxiliary polyhedron – this is the basis of our con-
struction. While Doo–Sabin shrinks the individual faces by
applying a convex combination of the vertices, in our case –
as we need to handle faces with concave angles and holes – a
different approach is needed. As shown in Figure 6, we pro-
pose to define shrunken faces by sliding the original edges
‘inwards’; thus chamfers will have boundaries parallel with
the original edges.

First we take all faces of the control polyhedra, and for
each edge we determine a maximum offset line of how far
it can slide without intervening with another non-adjacent
edge. Figure 7 shows different types of edges connecting
(a) convex–convex, (b) concave–concave and (c) concave–
convex corners, showing how they slide and run into obsta-
cles. If a moving edge and its adjacent edge spans a concave
angle, we slide on the extension of the adjacent edge.

(a) Convex (b) Concave (c) Mixed

Figure 7: Offset lines by corner types

Sliding determines a maximum offset for each moving
edge, at the same time there is an ‘opposite edge’ that slides
towards the current one. In order to avoid intersections we
enforce that the actual chamfering boundary edge will not
be placed beyond the half of its maximum region. We in-
troduced a global offset parameter to control the depth of
chamfering; it is a percentage of the maximal offset, retract-
ing the offset lines towards the original edges. Of course,
offset values can be set locally, as well. We remark that in
special cases further constraints may need to be imposed for
the widths of the chamfering faces, details can be found in
Szörfi.15

Next we perform vertex chamfering to produce a collec-
tion of facets. Take an arbitrary vertex of the control poly-
hedron, and pick the neighbouring faces. In each face there
are two offset lines, whose pairwise intersections determine
retracted auxiliary vertices for the related facet. For faces
with concave angles we have found that pairwise intersec-
tion would create shape artifacts, so we propose to generate
two auxiliary vertices using edge extensions. This is illus-
trated by a simple example in Figure 8 (facets are colored
purple). Here Ff1 shows a shrunken FACE-face; Ef3, Ef5 and
Ef7 are EDGE-faces determined by various offset lines oli;
and Vf2, Vf4 and Vf6 are VERTEX-faces, i.e., facets. Observe
that while Vf2 is a three-sided facet with intersecting offset
lines, Vf4 is four-sided with two auxiliary vertices, computed
by the intersection of offset line ol1 with the extended edge
e2, and ol2 with the extended e1. The significance of this
will be explained in the next section, where curve network
creation is described.

Figure 9 demonstrates the effect of changing the global
offset parameter. While smaller offsets produce small cham-
fers and yield blended polyhedra with relatively high cur-
vatures, large offsets push the chamfers inwards and yield
globally smoothed polyhedra with more even curvature dis-
tribution. (See also Section 8, Case study 2.)

6. Curve network and interior control points

The auxiliary polyhedron defines a curve network of cubic
Bézier curves in a natural manner. Take pairs of adjacent
facets and connect their centroids in such a way that each
curve is forced to be tangential to the corresponding local
planes of their facets. An example is shown in Figure 10,
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Figure 8: Creating an auxiliary polyhedron

(a) Polyhedron – small offset (b) Polyhedron – large offset

(c) Patchwork – small offset (d) Patchwork – large offset

Figure 9: Changing the global offset parameter

where we connect the centroid of the top-right, 3-sided facet
with the centroid of the middle-right, 4-sided facet. The cu-
bic boundary curve is determined by four control points
C00, C01, C02 and C03. Both C01 and C02, i.e., the tan-
gent control points of the curve, are placed on their respec-
tive facets at the midpoints of the corresponding sides, thus
the requested tangential constraints are satisfied. If we take
an arbitrary facet and all the related curves starting from its
centroid, smooth connection to the common tangent plane is
automatically ensured.

The 4-sided facet in the middle represents a concave ver-
tex. It can be observed that due to the symmetric place-
ment of the control points, the left and right boundary seg-
ments meet with C1 continuity there. In general, the adjacent
boundary segments of all concave vertices will be smoothly
connected and this property will be utilized when the CD-
GB patches are constructed.

In order to define cross-derivatives for the individual
boundary segments, we need a second row of control points.

Figure 10: Curve and interior control points for a boundary
segment

(a) Concave face (b) Face with three holes

Figure 11: Interior control points

These can also be naturally derived from the auxiliary poly-
hedron. In our example, the control point C10 corresponds
to the tangent control point of the adjacent curve starting
from the centroid of the 3-sided facet. C13 represents a
common tangent direction on the 4-sided facet, ensuring
smoothly varying cross-derivatives between the segments of
the smooth boundary. C11 and C12 are placed at the related
vertices of the facets. These represent the well-known twist
control points, associated with bicubic Bézier patches. The
four-tuplet C10, C11, C12 and C13 will fully determine the
cubic cross-derivative function associated with the selected
boundary. The control structure of the full T-shaped patch
can be depicted in Figure 11a, while another example with
three hole loops is shown in 11b. As can be seen, the hole
loops in the interior are represented by a sequence of four
smoothly connected Bézier segments.

The cross-derivatives of the opposite ribbons will be in-
herited by the opposite multi-sided patches. For a tangent
plane continuous connection the well-known direction blend
methods can be applied, see details in Szörfi.15

We have freedom to set the magnitudes of the tangents
of the cubic Bézier curves. Accordingly, we have introduced
a second global shape parameter, called tangent multiplier,
that controls the fullness of the boundary segments, and si-
multaneously sets the elevation of the curved patches from
the faces of the control polyhedron. The endpoints at the cen-
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Figure 12: A CD-GB patch, different degrees and number of
rows

troids are fixed, but the tangent control points will be shifted,
thus a more evenly curved patchwork can be obtained, with-
out relatively flat surfaces. A simple example is shown in
Section 8, see Case study 2.

7. Curved Domain Generalized Bézier patches

A detailed description of the CD-GB patch can be found in
Várady et al.,17 here we just summarize the basic concept.
The patch is a normalized combination of n Bézier ribbons;
an example is shown in Figure 12. The i-th ribbon Ri is de-
fined by (di +1)× (ei +1) control points, and its equation is
given in the following form:

Ri(si,hi) =
di

∑
j=0

ei

∑
k=0

Ci
j,k ·B

di
j (si)B

ei
k (hi). (1)

Here si,hi ∈ [0,1] denote local parameters along the bound-
ary and in the cross direction, respectively. Ci

j,k refers to the
j-th control point in the k-th row, being multiplied by as-
sociated Bernstein polynomials. In our current project, each
ribbon is made of cubic boundaries with one additional row
of control points to ensure G1 continuity, thus di = 3 and
ei = 1, for all i.

The CD-GB patch is defined over a curved domain in the
(u,v) plane, and for each side we compute a local parame-
terization, where the side parameter si = si(u,v) varies lin-
early on side i between 0 and 1, while the distance parameter
hi = hi(u,v) vanishes on side i and increases monotonically
within the domain, eventually reaching 1 as it gets to the
‘distant’ sides. Details of the domain generation and param-
eterization can be found in the above paper, here we just
show two examples how the (si,hi) isolines were generated
for two test faces, see Figure 13.

When formulating the patch equation we combine modi-
fied ribbons R∗

i , using degree-raised Bernstein functions in
the cross direction (e∗i = 2ei +1). We also introduce rational
correction terms µi

j(hi) to ensure that the multi-sided patch
interpolates the individual Bézier ribbons:

R∗
i (si,hi) =

di

∑
j=0

ei

∑
k=0

Ci
j,k ·µ

i
j(hi)B

di
j (s)B

e∗i
k (h). (2)

(a) Concave face (b) Face with three holes

Figure 13: s–h parameterizations

In fact, the correction terms µi
j(hi) depend on the distance

parameters of the adjacent sides hi−1 and hi+1, as well. Here
we apply circular indexing and it is sufficient to use squared
terms for G1 continuity. In the cubic case:

µi
j = h2

i−1/(h
2
i−1 +h2

i ) for j ∈ {0,1}, (3)

µi
j = h2

i+1/(h
2
i+1 +h2

i ) for j ∈ {2,3}. (4)

In order to ensure the convex combination property, we
need to guarantee that the weighting functions sum up to 1 in
each point of the curved domain. To this end, we normalize
the patch equation by dividing with the sum of the control
point weights:

S(u,v) =
1

BΣ(u,v)
·

n

∑
i=1

R∗
i (si,hi), (5)

where

BΣ(u,v) =
n

∑
i=1

di

∑
j=0

ei

∑
k=0

µi
j(hi)B

di
j (si)B

e∗i
k (hi). (6)

For multi-loop configurations the above formula can be gen-
eralized in a straightforward manner.

8. Discussion

In this section we try to demonstrate the capabilities of the
topology preserving method by means of a few interesting
examples. All the objects and images have been generated
by aninteractive 3D test program15 written in C++.

Case study 1. We can observe the difference between the
dual and the topology preserving approach by a simple
model that ha four-sided faces only. While the dual method
yields 16 three-sided and 8 six-sided patches, our solution
preserves the structure yielding only quadrilateral patches,
see Figure 14.

Case study 2. One advantage of our approach is that – in
fact – a family of objects can be produced by adjusting
the shape parameters. Increasing the global offset yields
smoother patches, but due to the enlarged chamfers it also
pulls the patches inwards within the control polyhedron,
see Figure 15b. When the tangent multipliers are increased,
the auxiliary polyhedron is retained, but the fullness of the
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(a) Dual (b) Topology preserving

Figure 14: Comparison

(a) Small global offset (b) Large global offset

(c) Small tangent multiplier (d) Large tangent multiplier

Figure 15: Changing the shape parameters

boundary segments (and thus the multi-sided patches) will
be enlarged. A simple example is shown in Figure 15d.

Case study 3. Th strength of our solution is well demon-
strated in Figure 16, where the algorithm successfully pro-
cessed a model with three through holes. Note that the top of
the patchwork is covered by a single patch containing three
internal edge loops.

Case study 4. The complexity of the individual patches can
be observed in Figure 17, where we display two interesting
patches, separately.

9. Conclusion

We have investigated a new modeling technique to create a
free-form patchwork from a control polyhedron. The novelty
of the approach is that the constituting surfaces are multi-
sided, multi-connected Bézier patches over a topology pre-
serving structure. First an auxiliary polyhedron is computed
by special chamfering operations, then the control points of

(a) Control polyhedron (b) Auxiliary polyhedron

(c) Control structure (d) Patches

Figure 16: A model with several inner loops

(a) All patches

(b) A patch with one hole (c) A patch with two holes

Figure 17: Individual patches

the multi-sided patches are determined. We have also dis-
cussed shape variations using different parameters.

This scheme produces tangent plane continuous patches,
and the generalization for curvature continuity is clearly a
challenging task. The auxiliary polyhedron can be generated
by many different rules, and further research is needed to
analyze the ‘pros and cons’ of the alternative solutions.

Acknowledgements

This project has been partly supported by the Hungarian
Scientific Research Fund (OTKA, No. 124727: Modeling
general topology free-form surfaces in 3D). The authors ac-
knowledge highly valuable technical discussions and contri-
butions from Péter Salvi and Márton Vaitkus, in particular,



Jázmin Szörfi, Tamás Várady / Polyhedral design with concave and multi-connected faces

the 3D test environment and the curved domain library, re-
spectively.

References

1. E. Catmull, J. Clark: Recursively generated B-spline
surfaces on arbitrary topological meshes, Computer-
Aided Design, 10(6):350–355, 1978.

2. H. Chiyokra, F. Kimura: A new surface interpola-
tion method for irregular curve models, Computer
Graphics Forum, 3:209-218, 1984

3. D. Doo: A subdivision algorithm for smoothing down
irregularly shaped polyhederons, In: Proceedings of the
international conference on Interactive Techniques in
Computer-Aided Design, pp. 157–165, 1978.

4. G. Farin: Curves and Surfaces for CAGD – 5th Edition,
Elsevier, 2002.

5. G. J. Hettinga, J. Kosinka: A multisided C2 B-
spline patch over extraordinary vertices in quadrilateral
meshes, Computer-Aided Design 127, #102855, 2020.

6. K. Karciauskas, J. Peters: Fair free-form surfaces that
are almost everywhere parametrically C2, Journal
of Computational and Applied Mathematics 349:470–
481, 2019.

7. K. Karciauskas, J. Peters: A new class of guided C2

subdivision surfaces combining good shape with nested
refinement, Computer Graphics Forum 37(6):84–95,
2018.

8. C. Loop, T. D. DeRose: Generalized B-spline surfaces
of arbitrary topology, In: Proceedings of the 17th an-
nual conference on Computer Graphics and Interactive
Techniques, pp. 347–356, 1990.

9. C. Loop, S. Schaefer: Approximating Catmull-Clark
subdivision surfaces with bicubic patches, ACM Trans-
actions on Graphics (TOG), 27(1):1–11, 2008.

10. P. Malraison: N-sided surfaces: A survey, In: Curve
and Surface Design, P-J. Laurent, P. Sablonnière,
L. L. Schumaker (eds.), pp. 247–255, Vanderbilt Uni-
versity Press, 1999.

11. J. Peters: Constructing C1 Surfaces of arbitrary topol-
ogy using biquadratic and bicubic splines, Designing
Fair Curves and Surfaces, N. S. Sapidis (ed.), pp. 277–
294, SIAM, 1994.

12. J. Peters: Splines for meshes with irregularities, SMAI
Journal of Computational Mathematics, 5:161–183,
2019.

13. A. Rockwood, K. Gao: SuperD: Conceptual 3D mod-
eling on mobiles, ACM SIGGRAPH 2018 Appy Hour,
#7, 2018.

14. Á. Sipos, T.Várady, P. Salvi: Multi-sided implicit sur-
facing with I-patches, Computers & Graphics, 90:29–
42, 2020.

15. J. Szörfi: Kontrollpoliéder alapú 3D modellezés
általánosított Bézier felületekkel (in Hungarian),
Diploma Thesis, Budapest University of Technology
and Economics, 2021.

16. T. Várady, P. Salvi, G. Karikó: Multi-sided Bézier Patch
with a Simple Control Structure, Computer Graphics
Forum, 35(2):307–317, 2016.

17. T. Várady, P. Salvi, M. Vaitkus, Á. Sipos: Multi-sided
Bézier surfaces over curved, multi-connected domains,
Computer Aided Geometric Design, 78:101828, 2020.


