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Abstract
We propose a new surface representation, the Generalized B-spline (GBS) patch, that combines ribbon interpolants
given in B-spline form. A GBS patch can connect to tensor-product B-spline surfaces with arbitrary Gm continuity.
It supports interpolation constraints not only along the outer perimeter loop, but also around holes in the interior
of the patches.
Ribbon control points are weighted by products of B-spline and Bernstein basis functions, multiplied by rational
terms ensuring geometric continuity. A new local parameterization method is introduced using harmonic functions,
that handles periodic hole loops, as well. Several examples illustrate the capabilities of the proposed scheme. This
paper is a shortened version of a recent journal publication by Vaitkus et al.26

1. Introduction

The representation of general, multi-sided surfaces is a fun-
damental problem in Computer-Aided Geometric Design.
Such surfaces are needed for designing and reconstructing
complex free-form objects, and for creating smooth tran-
sitions that connect a set of given surfaces (hole filling,
vertex blending, lofting). Multi-sided surfaces can be gen-
erated either by trimming or adjoining standard four-sided
(tensor product Bézier or B-spline) patches, or alternatively
as genuinely multi-sided parametric patches, defined over
some non-rectangular two-dimensional region. While four-
sided patches are compatible with industrial CAD stan-
dards, multi-sided patches generally allow for higher qual-
ity surfaces, as well as precise boundary control. However,
problems emerge in design situations where the boundary
curves are concave with high curvature variation, and ex-
plicit boundary and cross-derivative constraints need to be
satisfied along hole loops of a multiply connected surface.

To overcome these problems we propose a new multi-
sided surface representation, the Generalized B-spline (GBS)
surface, that connects to ribbon interpolants given in tensor-
product B-spline form with arbitrary Gm continuity. GBS
patches are defined by control points, weighted by prod-
ucts of B-spline and Bernstein basis functions, pulled back
from their standard rectangular domain onto a general subset
of the plane using local (re-)parameterizations. The weight
functions are further blended using rational terms to ensure
smooth connections with the interpolants.

Choosing the parametric domain and the local parame-
terizations are important aspects of any multi-sided surface
scheme. The majority of existing multi-sided parametric sur-
faces are defined over regular polygonal domains, which
affects the geometric quality of the surfaces that can be
modeled, similarly to uniform knot vectors in traditional
NURBS representations. To facilitate the modeling of com-
plex shapes, GBS patches are defined over curved, possibly
multiply connected planar subsets. The local parameteriza-
tion of such general domains pose a new challenge, which
we tackle using a novel parameterization method based on
harmonic functions, that can easily be generalized also to
periodic parameterization of interior loops.

We show three simple examples illustrating the benefits of
the GBS surface representation. The first model is bounded
by a winding, concave ribbon, and another representing a
planar profile on an extruded surface, see Figure 1a. It would
be difficult to produce such a constrained patch by trim-
ming; in contrast, the GBS patch yields a nice shape. On
the second model (Figure 1b), the base surface has several
concave boundaries as well as a periodic B-spline ribbon in
the interior with vertical cross-derivatives. Traditional CAD
would require complex trimming and lofting operations to
reach this configuration, while the GBS patch produces a
nice, multiply connected shape without auxiliary steps. The
third example is a half bottle (Figure 1c) with an interior rib-
bon matching a developable surface label, blended with the
ribbons of the bottle using a single GBS patch.
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(a) Highly curved concave boundary (b) Interior loop with cross-derivatives (c) Half-bottle with label surface

Figure 1: Motivational examples of Generalized B-spline surfaces.

The paper is structured as follows. A brief review of rele-
vant prior art is given in Section 2, followed by a detailed
description of the GBS patch equations in Section 3. We
present our novel methods for the generation and local pa-
rameterization of curved domains in Section 4. We demon-
strate the modeling capabilities of GBS patches via a variety
of case studies in Section 5. Finally, we draw conclusions
and discuss opportunities for future work.

2. Previous work

Our primary focus here is the representation of multi-sided
surfaces. These can be categorized as (i) smoothly con-
nected macropatches composed of quadrilaterals, (ii) trans-
finite interpolation and (iii) control point based representa-
tions. Peters16 and Hughes et al.10 exhaustively survey the
variety of macropatch approaches, while a good summary of
transfinite schemes can be found in Várady et al.27 Very few
methods have the ability to model multiply connected sur-
face patches – we are only aware of the attempts by Kato12

and Sabin,20 both in the transfinite setting.

We restrict the rest our discussion to control point
based methods. Concerning those that generalize the Bern-
stein–Bézier representation, there are a variety of classical
approaches, including S-patches,14 toric patches,13 Zheng-
Ball patches32 and M-patches,11 see also Chapter 8 of the
textbook3 by Goldman. Our work is most closely related to
the Generalized Bézier (GB) patches introduced by Várady
et al.28, 29 Recent advances on GB patches included the re-
moving of twist compatibility assumptions,6 and generaliza-
tions to concave,23 and then curved domains.30

There are also control point based, multi-sided patches
bounded by B-spline curves. The work of Pla-Garcia et al.19

maps B-spline basis functions to a planar spline domain with
fixed knot vectors. Similarly, Yuan and Ma31 maps oriented
tensor-product B-spline functions to vertices of a flattened
quad mesh. The recent works of Hettinga and Kosinka8, 7 de-
scribe a hole filling approach at the irregular points of sub-
division surfaces, extending the convex GB patch28 using
modified blending functions to ensure G2 continuity with

surrounding surface elements. Isogeometric finite element
analysis also pulls back B-spline functions onto a general
domain through a piecewise-polynomial parameterization.10

In a recent preprint Martin and Reif15 introduced ABC
patches for the accurate boundary control of trimmed
NURBS patches. The domain and the local parameteriza-
tions are defined implicitly by B-spline functions, and the
result can be converted into a collection of standard NURBS
surfaces.

After the publication of our original journal paper, a fresh
work of Sabin et al.21 applied perturbations to B-spline
patches along curved knot lines in a CAD-compatible way.
The domain boundaries must be implicit lines or conics, and
the perturbations must be expressed as constant jumps in
derivatives.

The GBS patch proposed in this paper lifts most (implicit
or explicit) assumptions of previous representations. It does
not require uniform or symmetric knot arrangements, and
combines arbitrary B-spline ribbons with arbitrary geomet-
ric continuity. while being capable of handling complex con-
cave boundaries and hole loops as well.

3. GBS patch equation

The GBS patch is defined by n piecewise-polynomial rib-
bons, determining positions and cross-derivatives along sub-
sets of the surface boundary. We distinguish open (clamped)
and closed (periodic) B-spline ribbons: open ribbons con-
nect sharp corners along the boundary; closed ribbons define
hole loops in the interior. The i-th ribbon Ri is defined by
(pi + 1)× (mi + 1) control points, and its equation is given
in the following form:

Ri(si,hi) =
pi

∑
j=0

mi

∑
k=0

Ci
j,k ·N

ξ,di
j (si)B

mi
k (hi). (1)

Local ribbon parameters along and across the boundary are
denoted as si,hi ∈ [0,1]. The j-th control point in the k-th
row Ci

j,k is multiplied by B-spline functions Nξi,di
j with knot
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vector ξi and degree di, and Bernstein polynomials Bmi
k . Note

that the degrees and knot vectors, as well as the number of
cross-derivatives could be different for each B-spline ribbon.

The GBS patch is defined over a curved domain in the
(u,v) plane, and each side corresponds to a local ribbon
(re-)parameterization, where the side parameter si = si(u,v)
varies linearly on side i between 0 and 1, while the dis-
tance parameter hi = hi(u,v) vanishes on side i and increases
monotonically within the domain, eventually reaching 1 as it
gets to the ’distant’ sides. A multiply connected domain with
its local parameterizations are shown in Figure 2. Details
of domain generation and parameterization will be given in
Section 4.

When formulating the patch equation we combine modi-
fied ribbons R∗

i , using degree elevated Bernstein functions in
the cross direction. We also apply rational correction terms
to ensure that the multi-sided patch interpolates the original
ribbons with Gmi continuity:

R∗
i (si,hi) =

pi

∑
j=0

mi

∑
k=0

Ci
j,k ·µ

i
j(hi)N

ξ,di
j (s)B2mi+1

k (h). (2)

where correction terms µi
j(hi) (which also depend on the dis-

tance parameters of the adjacent sides hi−1 and hi+1) are
similar to Gregory’s square:5

µi
j =


hmi+1

i−1 /(hmi+1
i−1 +hmi+1

i ), j = 0, . . . ,mi

hmi+1
i+1 /(hmi+1

i+1 +hmi+1
i ), j = pi −mi, . . . , pi

1, otherwise

(3)

The sums of uncorrected and corrected blend functions over
a multiply connected domain are shown in Figure 3.

Finally, in order to ensure the convex combination prop-
erty, we normalize the patch equation:

S(u,v) = 1
BΣ(u,v)

·
n

∑
i=1

R∗
i (si,hi), (4)

by dividing with the weight sum

BΣ(u,v) =
n

∑
i=1

pi

∑
j=0

mi

∑
k=0

µi
j(hi)N

ξ,di
j (si)B

2mi+1
k (hi)). (5)

An alternative to normalization is to assign the weight de-
ficiency 1−BΣ(u,v) to a single "central" control point. In
certain cases it might be beneficial to introduce additional
control points that only affect the patch interior. We refer to
Section 5 of our journal paper26 for further discussion on the
various possibilities of interior shape control.

The above formulas can be generalized in a straight-
forward manner for multi-loop configurations as well, but
note that rational correction terms are not necessary for
closed/periodic ribbons – see Figure 3c.

Generalized Bézier patches over curved domains30 are
special GBS patches, where every B-spline consists of a sin-
gle Bézier segment – see also Section 5.6.

4. Domain and parameterization

In the following we describe our methods for curved domain
generation and local parameterization. In this paper we only
give a high-level description of our implementations – fur-
ther technical details can be found in Section 4 of our journal
paper26.

4.1. Domain generation

The curved domains of GBS patches are generated by sam-
pling the boundary curves into polylines, then developing
them into the tangent planes of the interpolants, meaning
the curves are isometrically flattened while preserving their
shape within the surface (i.e., their geodesic curvature).
The developed 2D polylines generally do not form a closed
loop (due to the non-zero Gaussian curvature of the surface
patch), thus their vertices are shifted to a minimal extent
such that they do so.

The interior loops of multiply connected surfaces are pro-
jected onto the GBS patch defined by the outer perimeter
loop.

4.2. Local parameterization

Our goal is to determine local (si(u,v),hi(u,v)) parameters
for each ribbon over the curved domain Ω ⊂ R2 that satisfy
the properties described in Section 3. We look for harmonic
functions, which are constrained minimizers of the Dirichlet
energy:

minimize
f

∫
D
|∇ f |2 dA

subject to f (x) = b f (x),x ∈ D f ,

(6)

where f = si or hi, and b f encodes Dirichlet bound-
ary conditions for the constrained subset of the boundary
D f ⊂ ∂Ω. Harmonic functions are preferred, as they are
guaranteed to be C∞-continuous in the interior as well
as monotonic without local maxima, and are also widely
used in various applications,2, 4 including tensor-product re-
parameterizations of curved domains.9 The method can also
be generalized to periodic parameterization of closed rib-
bons by prescribing quantized jumps for the s-coordinate
value along a series of (virtual) cuts.

This variational problem can easily be discretized over a
triangulation of the domain, resulting in a discrete Laplace
equation.18 The parameterization is then given in the form
of a C0 piecewise-linear function. Note that the surface will
eventually be tessellated for rendering and downstream ap-
plications anyway, and higher-order approximations to har-
monic parameterizations could also be computed using al-
ternative methods24, 10.
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(a) B-spline ribbons with GBS surface

(b) Curved domain with local parameters (c) Interior loop

Figure 2: Multiply connected curved domain and local parameterizations for a GBS patch.

5. Case studies

In this section we discuss some interesting features of GBS
patches, and show related case studies. In our examples, the
boundary curves and cross-derivatives are defined by non-
uniform, cubic B-splines. In the hole filling context ribbons
are explicitly derived from the surrounding patches. In curve
network based design the adjacent ribbons are specified to
match a common direction blend or curvature function, com-
puted over their common knot sequence. We use an approx-
imate G1/G2 connection algorithm22, where ribbons match
a common rotation minimizing frame.

5.1. Convex vs. curved domains

Classical methods for modeling complex multi-sided regions
often fail, and the shape may fold under itself. On Figure 4

we compare a convex-domain Charrot–Gregory patch1 with
a curved-domain GBS patch.

5.2. Sheet metal part

A surface model defined by a concept car sketch are shown
on Figure 5, together with curvature map. The control struc-
ture contains two ribbons with three layers for additional
shape control.

5.3. Smoothly connected patch network

Figure 6 shows a model for the front part of a concept car,
together with slicing and a mean curvature map. Four GBS
patches are smoothly connected with G1 continuity.
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(a) Before correction (b) After correction (c) Interior loop

Figure 3: Sum of ribbon B-spline basis functions pulled back onto a multiply connected domain.

(a) Charrot–Gregory patch, convex domain (b) GBS patch, curved domain

Figure 4: Comparison of convex and curved domains. Colors indicate mean curvature.

5.4. Multi-sided patches at extraordinary vertices

One important utilization of multi-sided patches is to fill
holes at the extraordinary vertices of quadrilateral meshes,
for example in Catmull–Clark subdivision. The quality of
these patches is particularly important, and various solutions
have been published16, 8. The key idea is to borrow positional
and cross-derivative information from the surrounding reg-
ular patches and insert a multi-sided patch with G2 conti-
nuity – for example, a GBS patch with suitable three-layer
ribbons. We have picked an example from a standard test
suite17 and examine the curvature map and the distribution
of isophotes around the extraordinary point on Figure 7.

5.5. Multiply connected surface

We illustrate the ability of GBS patches to model multiply
connected surfaces using the example of a plastic bottle, with
Figure 8 showing the original surface and its modification
with an interior loop. The cross-derivatives for the side rib-
bons and the hole loop must be orthogonal to the symme-
try plane of the bottle in order to smoothly connect with the
other half.

5.6. Polyhedral design

GBS patches are also well-suited to represent a patch com-
plex indirectly defined by a control polyhedron and an asso-
ciated curve network. We refer to a companion paper in the
same conference proceedings25 where curved domain Bézier
patches are used in polyhedral-based design.

6. Conclusions and future work

We have proposed a new multi-sided surface representation
that interpolates complex B-spline boundary curves with as-
sociated cross-derivatives as well as periodic B-splines in
the interior of multiply connected patches. The basic ele-
ments of the construction include curved domain genera-
tion, harmonic local parameterization for multiply connected
domains, and a combination of mapped B-spline and Bern-
stein basis functions with rational correction terms. We have
shown a variety of interesting shapes being represented by
GBS patches. We believe that these can hardly be produced
by means of trimming or macro-patch methods, or even tra-
ditional multi-sided schemes based on convex polygonal do-
mains.
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(a) Concept sketch

(b) Control structure (c) Mean curvature map

Figure 5: A panel of a sports car.

6.1. Future work

One particular issue is the weight deficiency in the interior
of the patches, which we currently correct by normalization,
the effect of which can be difficult to predict. Constructing a
uniform structure of interior control points for GBS patches
– similar to that of convex GB patches28 – appears to be a
promising research programme.

Another problem is that harmonic h-parameter lines are
unevenly distributed for long, strongly curved boundaries.
Resolving this would ensure that the ribbon cross-derivatives
affect the interior to a uniform extent. We also plan to ex-
plore alternative methods for computing harmonic functions,
such as Monte Carlo,24 and higher-order isogeometric finite
elements.10

We further remark that designing appropriate B-spline rib-
bons may become difficult in certain situations, thus interac-
tive CAD operations that support the designers’ work would
facilitate the wider use of GBS patches.

Finally, we realize that the primary limitation of the GBS
representation is its lack of CAD compatibility. We are cur-
rently actively researching methods for approximating GBS
patches with a network of standard NURBS surfaces.
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11. K. Karčiauskas. Rational M-patches and tensor-border
patches. In R. Goldman and R. Krasauskas, editors,
Topics in Algebraic Geometry and Geometric Model-
ing, volume 334 of Contemporary Mathematics, pages
101–130. AMS, 2003.

12. K. Kato. N-sided surface generation from arbitrary
boundary edges. In Curve and Surface Design, Inno-



Vaitkus et al. / Generalized B-spline surfaces

(a) Without the hole ribbon (b) With the hole ribbon

Figure 8: Multiply connected half-bottle surface. Colors indicate mean curvature.

vations in Applied Mathematics, pages 173–181. Van-
derbilt University Press, 2000.

13. R. Krasauskas. Toric surface patches. Advances in
Computational Mathematics, 17:89–113, 2002.

14. C. T. Loop and T. D. DeRose. A multisided generaliza-
tion of Bézier surfaces. ACM Transactions on Graph-
ics, 8(3):204–234, 1989.

15. F. Martin and U. Reif. Trimmed spline surfaces with
accurate boundary control, 2021. arXiv: 2009.02480.

16. J. Peters. Splines for meshes with irregularities. The
SMAI Journal of Computational Mathematics, 5:161–
183, 2019.

17. J. Peters. Quad-net obstacle course, 2020.
https://www.cise.ufl.edu/research/
SurfLab/shape_gallery.shtml.

18. U. Pinkall and K. Polthier. Computing discrete minimal
surfaces and their conjugates. Experimental Mathemat-
ics, 2(1):15–36, 1993.

19. N. Pla-Garcia, M. Vigo-Anglada, and J. Cotrina-Navau.
N-sided patches with B-spline boundaries. Computers
& Graphics, 30(6):959–970, 2006.

20. M. A. Sabin. Further transfinite surface developments.
In Mathematics of Surfaces VIII, pages 161–173. Infor-
mation Geometers, 1998.

21. M. A. Sabin, C. Fellows, and J. Kosinka. CAD model
details via curved knot lines and truncated powers.
Computer-Aided Design, 143:103137, 2022.

22. P. Salvi and T. Várady. Hierarchical surface fairing with
constraints. In Proceedings of the 14th ACM Sympo-
sium on Solid and Physical Modeling, pages 195–200.
ACM, 2010.

23. P. Salvi and T. Várady. Multi-sided Bézier surfaces over
concave polygonal domains. Computers & Graphics,
74:56–65, 2018.

24. R. Sawhney and K. Crane. Monte Carlo geometry pro-
cessing: A grid-free approach to PDE-based methods
on volumetric domains. ACM Transactions on Graph-
ics (TOG), 39(4), 2020.

25. J. Szörfi and T. Várady. Polyhedral design with
concave and multi-connected faces. In X. mag-
yar számítógépes grafika és geometria konferen-
cia, (GRAFGEO 2022). Neumann János Számítógép-
tudományi Társaság (NJSZT), 2022.

26. M. Vaitkus, T. Várady, P. Salvi, and Á. Sipos.
Multi-sided B-spline surfaces over curved, multi-
connected domains. Computer Aided Geometric De-
sign, 89:102019, 08 2021.

27. T. Várady, A. Rockwood, and P. Salvi. Transfinite
surface interpolation over irregular n-sided domains.
Computer-Aided Design, 43(11):1330–1340, 2011.

28. T. Várady, P. Salvi, and G. Karikó. A multi-sided Bézier
patch with a simple control structure. Computer Graph-
ics Forum, 35(2):307–317, 2016.

29. T. Várady, P. Salvi, and I. Kovács. Enhancement of
a multi-sided Bézier surface representation. Computer
Aided Geometric Design, 55:69–83, 2017.

30. T. Várady, P. Salvi, M. Vaitkus, and Á. Sipos. Multi-
sided Bézier surfaces over curved, multi-connected do-
mains. Computer Aided Geometric Design, 78:101828,
2020.

31. X. Yuan and W. Ma. Mapped B-spline basis functions
for shape design and isogeometric analysis over an ar-
bitrary parameterization. Computer Methods in Applied
Mechanics and Engineering, 269:87–107, 2014.

32. J. Zheng and A. A. Ball. Control point surfaces over
non-four-sided areas. Computer Aided Geometric De-
sign, 14(9):807–821, 1997.

https://www.cise.ufl.edu/research/SurfLab/shape_gallery.shtml
https://www.cise.ufl.edu/research/SurfLab/shape_gallery.shtml

	Introduction
	Previous work
	GBS patch equation
	Domain and parameterization
	Domain generation
	Local parameterization

	Case studies
	Convex vs. curved domains
	Sheet metal part
	Smoothly connected patch network
	Multi-sided patches at extraordinary vertices
	Multiply connected surface
	Polyhedral design

	Conclusions and future work
	Future work

	References

