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Abstract
Many multi-sided surface representations exist that satisfy a given set of boundary constraints. Most of them are
defined by means of parametric equations, i.e., there is a given domain and a function mapping it to a surface.
Implicit surfaces represent an interesting alternative to avoid the difficulties of parametrization, although they also
have their own problems. In this paper, we review various schemes for representing implicit patches in a general
topology setting, showing their advantages and deficiencies.
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1. Introduction

Multi-sided surface modeling is dominated by parametric
representations. While control point based surfaces1, 2 are
calculated as a weighted average of an editable point struc-
ture; transfinite interpolation surfaces3, 4, 5 are constructed as
a blend of ribbon surfaces, defined along individual bound-
aries. The difficulty of modeling with parametric surfaces is
due to the necessity of an intrinsic parameterization to map a
planar domain to 3D, which is a delicate issue. While tessel-
lating parametric surfaces is easy, several geometric interro-
gations are computationally complex. Many of these can be
performed more efficiently using implicit surfaces; for ex-
ample, intersections, connecting trimmed patches, ray cast-
ing, and so on.

An implicit surface is interpreted as an isosurface of a
scalar-valued function defined on the 3-dimensional space.
This also defines two half-spaces, thus making point mem-
bership classification easy. Regular surfaces in CAD systems
are generally represented in implicit form, however, extra
care is needed when modeling free-form implicit surfaces
with higher degrees, as these may produce various shape ar-
tifacts, such as singularities, self-intersections, and discon-
nected parts. Implicit surfaces are more rigid than paramet-
ric ones, and properly adjusting the shape interior without a
geometric control structure may be a challenge.

Our current interest is to investigate multi-sided implicit
surfaces, which can be used similarly to their parametric
counterparts, while the advantages of using algebraic repre-
sentations are exploited. We wish to define a finite portion of

a surface that interpolates a collection of prescribed bound-
ary curves and cross-derivatives, and simultaneously ensures
a natural blend in the interior without awkward twists, holes,
and self-intersections. We will revisit two main concepts for
representing implicit patches. The first is interpolation by
algebraic surfaces,6, 7 where we directly compute a polyno-
mial surface, satisfying positional and tangential constraints.
The other approach is ribbon-based surfacing,8, 9, 10 where
we blend together surfaces that “carry” prescribed boundary
constraints. This latter solution is somewhat similar to the
construction of transfinite patches.

This paper is a follow-up to Sipos et al.,11 elaborating
more on analysis and comparison to other schemes, while
leaving the exact details of our method in the original pa-
per. The paper is structured as follows. After reviewing
prior work in Section 2, we present potential difficulties
that should be avoided for reasonable implicit patches (Sec-
tion 3). In Sections 4 and 5 we examine algebraic interpola-
tion and ribbon-based representations, respectively. Related
problems and challenges will also be discussed.

2. Previous work

Multi-sided parametric surfaces have a wide presence
in the literature. These include transfinite surfaces like
the Charrot–Gregory patch,3 Kato’s patch,12 the Overlap-
patch,13 the Generalized Coons Patch14 and the Midpoint
Patch;15 as well as control point based surfaces like the S-
patch,1 toric patches16 and the Generalized Bézier patch.2
These patches are all parameterized over a planar polyg-
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onal domain, although non-polygonal ones also exist, like
that of the Curved Domain Bézier patch.17 We also have to
mention general curve network interpolation methods with
energy minimization schemes, which can be solved both in
parametric and discretized forms.18

Fitting implicit curves and surfaces to boundary con-
ditions dates back to Liming’s publication19 where fitting
conic segments (degree-two polynomials) on tangential con-
ditions was discussed. It provided an implicit equation for
conics in the form C(p) = (1−λ) ·L1(p) ·L2(p)−λ ·L2

3(p),
where L1(p) = 0 and L2(p) = 0 are lines in implicit form
representing tangential constraints. L3 is a line through the
endpoints of the conic segment and λ is a shape parameter
between 0 and 1. The rest of this section will review methods
achieving similar results for 3D surfaces with an arbitrary
number of constrained boundaries.

Bajaj and Ihm6 investigated the direct fit of an algebraic
surface onto given curves and constrained normal fences.
Based on Bézout’s theorem, for any given polynomial de-
gree, the coefficients arise as the solution of a linear sys-
tem. A minimal degree, for which the system is feasible, can
also be directly calculated beforehand. Such implicit sur-
faces are defined on the whole 3D space, often having ad-
ditional branches or singular points, which complicate ray
tracing, distance estimation and similar operations. Defining
a bounding box that contains all the necessary and none of
the undesirable parts of the surface is also not a trivial task.
(See also Section 4.)

Another algebraic polynomial representation is the
A-patch,7 which is defined on a tetrahedral space partition-
ing. These patches are trivariate polynomials using Bézier-
like control points and Bernstein basis functions. As a re-
sult, 2-, 3- or 4-sided patches are obtained, and it is guaran-
teed to exclude singularities or self-intersections; however,
they have a fairly complicated control structure and it is hard
to match boundary constraint equations even in low-degree
cases. Later, rational A-patches were also introduced by Xu
et al.20 These representations were primarily used to create
C1-continuous surfaces from triangle meshes.

Functional splines, introduced by Li et al.8 and
Hartmann,21 represent a direct generalization of Liming’s
method, defining the patch as a blend between a base sur-
face, which is the product of an arbitrary number of rib-
bon surfaces for the patch to be smoothly connected to, and
a transversal surface, which interpolates all the boundary
curves. Functional splines may achieve any degree of geo-
metric continuity, though they are usually not minimal de-
gree solutions. It has been pointed out by Hartmann and
Feng22 that many configurations, where an inflection inside
the patch is needed, cannot be correctly solved by functional
splines, so a modified version, called symmetric functional
splines, was introduced by Hartmann9 and applied for ver-
tex blending with good results. (See also Section 5.1.)

Várady et al.10 described a different ribbon-based patch

class, called the I-patch. Instead of a transversal surface, a
pair of a ribbon and a bounding surface is associated with
each side of the patch, thus yielding a natural local structure
of constraints. I-patches have more degrees of freedom than
functional splines; scalar weights are incorporated into the
equation, which help to control the interior of the shape.

Recently current authors have been directing their re-
search to deepen knowledge on I-patches and search for
modeling applications; some related results can be found in
Sipos et al.11 (See also Section 5.2.)

3. Potential difficulties

In this section, we deal with the potential problems that an
implicit surface representation may exhibit. A surface that
satisfies certain boundary constraints is not necessarily ac-
ceptable, and special care is needed to avoid various incon-
sistencies, as follows.

An implicit isosurface may consist of multiple branches.
In our context, we only wish to deal with the portion that
directly interpolates the boundaries. However, it is not guar-
anteed in general that other branches will not interact. In
Figure 1b multiple disjoint components lie in the close prox-
imity of the boundary curves. It is also possible that these
branches intersect each other, leading to singularities along
their intersection, these situations need to be identified and
possibly eliminated.

When interpolating boundaries, the prescribed condition
is generally that the gradient of the implicit patch is equal
to the gradient of the ribbon surface multiplied by a scalar.
When setting the constant parameters as the solution of
equations or by other means, they may have an arbitrary
sign. This means that the direction of normal vectors may
flip along the border, so the interior of the patch cannot be
both connected and nonsingular. In Figure 2 we demonstrate
this phenomenon with implicit curves and in Figure 1c with
an example surface. Consequently, we emphasize that set-
ting consistent orientations for the gradient constraints is a
crucial issue (see also Sipos et al.11).

Even when the patch is locally correct in the vicinity of
the boundaries, its interior may be unacceptable. Figure 1d
shows an example where the isosurface has a hole in the mid-
dle; clearly, this should be detected and avoided accordingly.

4. Algebraic interpolation

The method described by Bajaj and Ihm6 deals with con-
structing a minimal degree algebraic surface satisfying given
boundary constraints. These include points with an associ-
ated normal vector, or curves with a normal function along
them.
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(a) Good surface

(b) Additional branches

(c) Flipping

(d) Hole inside

Figure 1: Examples of surfaces fit on the same boundaries

(a) Well oriented constraints: good curve

(b) Badly oriented constraint: curve not connecting
Q1and Q2

Figure 2: Good and bad orientation of normal constraints;
spikes show the orientation of the gradient on both the con-
straint lines (blue) and the resulting curves (purple)

An algebraic surface defined by the function f : R3 → R
is said to interpolate the constraints with C1 continuity, if

f (p) = 0, (1)

∇ f (p) = α ·n, (2)

for all p specified points or all points of specified curves,
where n is the normal vector at p and α is a nonzero real
number.

For creating the equation system providing the surface co-
efficients, Bézout’s theorem is used: a curve of degree d in-
tersects a surface of degree n at most in n · d points, if the
number of intersections is finite; otherwise, a component of
the curve lies entirely in the surface. From this, it follows
that if we choose n ·d +1 points along the curve, then a sur-
face fulfilling the constraints will interpolate the branches of
the curve containing those points.

Now having reduced everything to point constraints, for
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(a) Boundary curves (b) Degree 4 solution (c) A degree 5 solution

(d) Another degree 5 solution (e) Degree 6 solution (f) Another degree 6 solution

Figure 3: Algebraic surfaces of various degrees fit on boundary curves

all (p,n) pair we have the following equations:†

f (p) = 0, (3)

nx ·∂y f (p)−ny ·∂x f (p) = 0, (4)

nx ·∂z f (p)−nz ·∂x f (p) = 0. (5)

The number of variables is the number of free coefficients
of a degree n algebraic surface, which is

(n+3
3
)
− 1. In the

rare case when the rank of the equation system is equal to
that, we have a unique solution. If there are fewer indepen-
dent equations, the system is under-determined and there are
infinitely many solutions. If there are more, the system is
over-determined, so there are no exact solutions with that
degree. The minimum degree solution(s) is the smallest de-
gree for which the equation system is not over-determined.

We experimented, among others, with the setback vertex
blend configuration shown in Figure 3. The curves are cir-
cular arcs and parabolas. The normal vectors at the corners
are uniquely defined by the curves, while the normal fence
function is a linear blend.

The minimal degree solution is a quartic surface which is

† Here we suppose that nx ̸= 0. Otherwise the equation nz ·
∂y f (p)− ny · ∂z f (p) = 0 needs to be used instead of one men-
tioned, so that the coordinate included in both tangential equations
is nonzero.

unique (Figure 3b), but the resulting patch contains two com-
ponents, none of them touching the whole boundary loop.‡

Using quintic surfaces, the homogenous equation has a 6-
dimensional nullspace, from which any element leads to a
solution. However, in our investigation no nice surface in-
side that space has been found, only surfaces like Figures
3c and 3d. Finally, a degree-6 surface configuration instantly
supplied a nice surface; Figure 3e shows a patch by taking
the coefficient vector belonging to the numerically lowest
singular value. We remark that it has been easy to find bad
degree 6 surfaces, as well (Figure 3f).

It would be useful to produce nice surfaces via optimiza-
tion inside the nullspace using an objective function evalu-
ated on the patch. Unfortunately, we are not aware of such a
function that provides a good minimum and is computation-
ally feasible.

5. Ribbon-based representations

The methods in this section are based on a common concept:
for each boundary of the multi-sided patch, there is a given
implicit surface Ri, to which the surface smoothly connects
with a given order of continuity. The surface equation is a

‡ It is worth noting that a unique minimal degree solution is often
good, for example Figure 1a is also such a surface.
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(a) Simple 3-sided configuration (b) Simple 6-sided configuration

Figure 4: Sample inputs and patches for ribbon-based im-
plicit surfaces

direct formula that includes the Ri-s and other auxiliary sur-
faces. Two examples are shown in Figure 4; the Ri surfaces
are colored light brown, while the resulting patch is green.

5.1. Functional spline

The formula of functional splines, as given by Li et al.,8 is

(1−µ) · f −µ ·gk, (6)

where f is called base surface and g is called transversal
surface, 0 < µ < 1 is a scalar parameter, 2 ≤ k is an integer
parameter. The property of the functional spline surface is
that it connects with Gk−1 continuity to the base surface in
the intersection points of the base and the transversal surface.

In a multi-sided setting, the base surface should be the
union of the ribbon surfaces, which is simply achieved by
f = ∏Ri. The transversal surface is a surface that interpo-
lates all boundary curves of the patch. In special cases, a
single surface can be provided, but the general solution is
to create one bounding surface (Bi) for interpolating each
boundary curve and to use their product as the transversal
surface.

Simple 2D examples show that functional splines can only
handle convex configurations, having problems with internal
inflections. Take, for example, the absurd curve in Figure 5a
that connects Q1 and Q2 within the area spanned by h1 and
h2. This limitation has been formalized by Hartmann and
Feng,22 where the exact definition of convexity in this regard
and the relevant theorems can be found.

Focusing on 3D surfaces, this means that configurations
like Figure 4a can be solved by functional splines, but ones
like Figure 4b cannot (causing problems similar to Figure
1c). This problem motivated the introduction of the symmet-
ric parabolic functional splines, as described by Hartmann.9
The following equation has been proposed:

(1−λ) · fa ·gk
b −λ · fb ·gk

a = 0, (7)

where fa is a surface touching all the locally convex bound-

(a) Functional spline with internal inflection

(b) I-patch with internal inflection

Figure 5: Handling inflections

aries, fb is a surface touching all the locally concave bound-
aries, ga and gb intersect fa and fb respectively at the appro-
priate boundaries, and 0 < λ < 1 is a scalar parameter.

Using the entities Ri –Bi, let A ⊂ {1,2, ...,n} be an in-
dex set denoting the primary surfaces with the same con-
vexity. Then fa = ∏i∈A Ri, fb = ∏i /∈A Ri, ga = ∏i∈A Bi,
gb = ∏i /∈A Bi.

More complex boundary constraints can be solved using
symmetric functional splines, see Figure 6a.

5.2. I-patch

As mentioned in the Introduction, our current focus is to in-
vestigate and exploit the capabilities of I-patches. The orig-
inal I-patch formula was published by Várady et al.10 It is
defined by the equation

n

∑
i=1

wiRi

n

∏
j=1
j ̸=i

Bk
j +w0

n

∏
j=1

Bk
j = 0, (8)

where the boundary curves of the patch are defined as the
intersection of associated ribbons Ri and bounding surfaces
Bi, (i = 1 . . .n). The surface smoothly connects to the rib-
bons with geometric continuity Gk−1. The wi weights are
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(a) 6-sided symmetric functional spline

(b) 6-sided I-patch

Figure 6: Comparison of a symmetric functional spline and
an I-patch

free scalar parameters to adjust the contribution of the indi-
vidual components.

I-patches can also be given in a simple rational form; di-
vide Eq. 8 by the term ∏

n
j=1 Bk

j then the patch equation be-
comes

n

∑
i=1

wiRi

Bk
i

+w0 = 0. (9)

This can be interpreted as a combination of (algebraic)
distances; i.e., the surface is the locus of points where the
sum of the distances ∑

n
i=0 di equals to zero, using d0 = w0

and di =
wiRi
Bk

i
. It can be shown that distance-based I-patches

can reproduce certain standard implicit surfaces, for exam-
ple spheres, ellipsoids, etc. Note that the distance-based for-
mula should not be evaluated in the very close vicinity of the
already well-defined boundary curves, due to 0/0 singulari-
ties. Further special considerations can be found in Sipos et
al.11

I-patches can also be interpreted as a weighted sum of
ribbons based on a blend function, similar to transfinite para-
metric patches.4 If we consider the functions

Fm = wm

n

∏
j=1
j ̸=m

Bk
j

/ n

∑
i=1

wi

n

∏
j=1
j ̸=i

Bk
j, (10)

it is easy to see that the isosurface of ∑
n
i=1 FiRi +F0 is the

same as that of the I-patch function, while also Fi = 1 at the

Figure 7: An I-patch colored by the weights of the individual
blend functions

ith boundary and Fi = 0 at all other boundaries, which is gen-
erally a prescribed condition in case of parametric patches as
well. In Figure 7 an I-patch is colored such that a color is as-
signed to each blend function, and in every surface point the
colors are blended with the same functions.

The number of independent scalar parameters in the
I-patch equation is equal to the number of sides (we can al-
ways divide the equation with w0), thus there are more possi-
bilities to tweak the shape of the surface than with functional
splines. In Figure 6b it can be seen that the moderately un-
even curvature distribution of the functional spline is greatly
enhanced via setting more optimal shape parameters.

In our previous paper11 we defined a framework for us-
ing I-patches to generate complex continuous surfaces based
on control polyhedra (Figure 8). Ribbons and bounding sur-
faces are generated automatically from the face midpoints
and normals, while coefficients are set by a reference point
at the middle of the patches assigning equal “algebraic dis-
tances” to the members of the above sum. There are spe-
cial cases where further geometric constraints need to be en-
forced in order to obtain a valid collection of patches, see
details in the paper.

We have also used I-patches for setback vertex blending,23

where special multi-sided patches are created in order to
smoothly connect converging edge blends and planar pri-
mary faces (Figure 9). As a result, these patches often have a
high number of sides, being naturally handled by the I-patch
construction.

Conclusion

We have investigated a variety of multi-sided patches defined
by implicit equations. These patches nicely connect to stan-
dard implicit surfaces, such as planes, cylinders, tori, etc.,
and provide several computational benefits for surface inter-
rogations. We have found that the I-patch representation is
presumably the most flexible for free-form modeling; since
it is a natural geometric approach to constrain surfaces by
means of implicit ribbons and bounding surfaces. There are
various options to construct ribbons and adjust their shape
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(a) Simple polyhedral blend (b) More complex polyhedral blend

Figure 8: Polyhedral blends created using I-patches

(a) A 10-sided setback vertex blend (b) Vertex blends defined by a control polyhedron

Figure 9: Setback vertex blends created using I-patches

parameters, but several open questions need to be answered
before we can draw a final conclusion about the capabilities
of multi-sided implicit modeling.
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