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Introduction:
We investigate the capabilities and limitations of approximating a triangular mesh by a collection of
smoothly connected, multi-sided implicit patches. We assume that the triangular mesh represents an
object bounded by large free-form faces, excluding high curvature variations and tiny features. We also
assume that there exists an initial network associated with the mesh; its vertices determine the corners
of the patches to be constructed, and its edges define loops for the patchwork. Such a network may be
created by a user, or produced by an automatic quad-mesh algorithm, or defined by a 3D cell structure—
examples will be given later. We compute an approximating patchwork and evaluate the deviations. If the
accuracy is not sufficient, we adaptively refine the initial structure by subdivision (permitting T-nodes)
and then refit, as needed.

The use of general implicit surfaces for free-form modeling is a controversial issue. They are gener-
ally C∞-continuous and represent half-spaces, so point-membership classification is straightforward. No
parameterization is needed for distance computations and approximating data points. Implicit surfaces
are favorable for several geometric interrogations, e.g. ray-tracing or intersections. Counter-arguments
include various shape problems, e.g. singularities, self-intersections, handling several disconnected sur-
face portions, and the lack of shape parameters. The approach of using finite implicit patches that are
evaluated only within a well-defined subspace, preserves the benefits and helps to eliminate the difficulties.

We will use I-patches [3], a class of implicit surfaces that interpolate a loop of boundary curves. Each
segment is defined as the intersection of a ribbon (primary surface) and a bounding surface, both given in
implicit form. I-patches smoothly join to the given ribbons. We will determine the ribbons and bounding
surfaces in such a way that the I-patch interpolates the corner points on the mesh, and its boundary
curves approximate the underlying data points. I-patches enable the computation of faithful distances,
and have further degrees of freedom, by means of which we compute an optimized approximation in the
interior.

Current authors recently published another paper [2], where I-patches were constructed for polyhedral
design and setback vertex blending. This also included a summary of important implicit approaches.

In this paper we are going to focus on how to create appropriate ribbons and bounding surfaces in the
mesh approximation context, how to optimize the free parameters to minimize deviation from the input
data, and how to adaptively refine the patchwork.
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Preliminaries:
An n-sided I-patch is defined by n ribbons and bounding surfaces, given in implicit form as Ri = 0 and
Bi = 0, respectively (i = 1 . . . n). The patch itself is constructed as the 0-isosurface of

I(x, y, z) =

n∑
i=1

wiRi

∏
j 6=i

B2
j − w0

n∏
j=1

B2
j , (2.1)

where wi (i = 0 . . . n) are free scalar parameters. It is defined within the volume enclosed by the bounding
surfaces, i.e., for points where Bi ≥ 0 for all i.

The intersection of Ri and Bi defines the i-th boundary curve, which is interpolated by the I-patch,
since all terms of the above expression vanish for points on the boundary. Similarly, it is easy to show
that at these points the gradient of Ri will be parallel to the gradient of the I-patch, so G1 continuity is
ensured. (Raising the degrees in Eq. (2.1) would guarantee a higher order of continuity.) When two or
more bounding surfaces coincide, special handling is needed; please refer to [2] for more details.

(a) Ribbons (b) Bounding surfaces (c) I-patch

Fig. 1: Construction of an I-patch.

Ribbons and Bounding Surfaces:
In this section we describe how to construct ribbons and bounding surfaces, whose intersection curves
will approximate the underlying mesh data. As will be explained below, all surfaces in this context are
constructed as a weighted combination of planes given at the corner points and auxiliary planes derived
from the patch configuration.

Let us take two adjacent corner points p1, p2, and incident corner planes π1, π2 with normal vectors
n1, n2. The corresponding ribbon interpolates both points and normal vectors. Similarly, the bounding
surface interpolates both points, but it is transversal to the ribbon surface.

We are going to use three kinds of surface for both ribbons and bounding surfaces: (i) planes,
(ii) Liming-surfaces, and (iii) I-lofts.

Liming [1] created conic curves as the combination of three implicitly given lines. A Liming-surface,
in turn, is the combination of three planes given in implicit form. When used as a ribbon, these are the
two corner planes and an auxiliary plane π̃ that contains both p1 and p2. The ribbon equation is then
given as (1 − λ)π1π2 − λπ̃2 = 0, where λ controls the fullness of the shape. When used as a bounding
surface, orthogonal planes take the place of corner planes.

I-lofts are simple, two-sided I-patches defined by two pairs of orthogonal planes containing a corner
point. When used as a ribbon, its primaries will be πi; and when used as a bounding surface, its primaries
will be planes perpendicular to πi.

The related boundary curves depend on the types of the intersecting surfaces. We may obtain straight
lines, when both are planes; conic curves or I-segments (a cross-section of an I-loft), when one of the
surfaces is planar; or general 3D intersection curves. In order to approximate a given boundary, we select
the simplest applicable ribbon–bounding pair; various geometric constraints, such as inflections or twisted
normal vectors require I-lofts, see [2]. Note that the ribbon and the bounding surface associated with a
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given p1p2 boundary is the same for the two adjacent I-patches that share this boundary, thus smooth
connection is ensured by the algebra.

Mesh Approximation:
The construction outlined above has several degrees of freedom. Corner points are assumed to be given,
and the corresponding normal vectors are approximated from the input mesh. But Liming-surfaces still
have a free parameter λ, and I-lofts have two independent weights. Here we describe how we can optimize
these, as well as the scalar weights of the I-patch itself, to obtain the best approximation in the interior
of the patches.

For edges in the interior of the mesh, it is sufficient to use planar bounding surfaces, while along
the boundary of the mesh typically curved bounding surfaces are needed. We trace a polyline along
the boundary as the intersection of the mesh and the bounding surface, and fit ribbons to approximate
sampled points on the polyline. When the Liming-surface and the I-loft are both valid, we choose the
one with smaller error.

The figure below shows a Liming and an I-loft ribbon, with corner planes and sampled points on the
mesh. The deviation map indicates that the ribbons are close to the mesh (green) in the vicinity of the
related boundary.

Fig. 2: A Liming (left) and an I-loft ribbon (right), showing deviation.

Next, mesh points are filtered out so only those remain that are enclosed by the bounding surfaces.
Then we compute the mass center of the polyline boundaries of the patch, and project this point onto
the mesh. The initial patch created goes through this center point.

Finally, the scalar weights of the I-patch are optimized to fit the data points. In the approximations we
minimize an error function that is the squared sum of faithful algebraic distances (a special formulation
producing a distance field close to Euclidean, see the full paper). For both of the above optimizations,
derivative-free methods can be applied, such as the Nelder–Mead algorithm.

Adaptive Refinement of the Patchwork:
Once an initial patchwork has been generated, we check whether it approximates the data points within
a prescribed tolerance and—if necessary—we perform an adaptive refinement following simple heuristic
rules. When it is out of tolerance, each related boundary is subdivided halfway between its endpoints, and
each related patch is split using a new mesh point in its interior. We connect the new subdivision points,
and add new artificial points in order to create a valid structure. This leads to a new graph of edges with
new ribbons and bounding surfaces. Care should be taken, however, to prevent the propagation of local
refinements over the full patchwork. Fortunately, I-patches are well-suited for producing T-nodes, as will
be shown below.

The first example in Figure 3 shows a boundary connecting p1 and p2 that needs to be subdivided; a
new mesh point pm is inserted and four new boundaries are created. The second example shows another
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configuration, where the patch needs to be split by pc. Here we preserve the ribbon connecting p1 and
p2, and inherit its midpoint qm exactly, so the original ribbon and bounding surface constraints remain
in effect for the subdivided patch, maintaining G1 continuity for this T-node.

p1

p2

pm

p1

p2

qm

pc

Fig. 3: Cases of adaptive refinement.

Examples:
Figure 4 shows the deviation map of a shoe last model. The network was created by a uniform cell
structure yielding two 3-sided, six 4-sided and two 5-sided I-patches. The accuracy of the approximation
in comparison to the bounding box axis is on average 0.069%, with a maximum of 0.35%.

The second example (Fig. 5) is a sheet metal part, showing the difference between the deviation maps
before and after optimizing the interior; accuracies changed from an average of 0.055% to 0.035%, while
the maximum deviation decreased from 0.399% to 0.226%.

Finally, Figure 6 shows the front part of a concept car. The first image depicts the ribbons of a
sparse network that has been refined in two steps. The deviations decrease (average: 0.14% → 0.027%
→ 0.016%, maximum: 3% → 0.3% → 0.12%) as the number of I-patches increases (10 → 15 → 28).

Fig. 4: Cell-based subdivision on a model of a shoe last.

Conclusion:
We have shown that it is possible to approximate a free-form object by a patchwork of smoothly connected
implicit patches, defined by corner points placed on a mesh and a graph that determines the connectivity
between them. Each patch is constructed by means of tangent planes and various fullness weights to
obtain a good approximation. These surfaces are naturally more rigid than parametrics, but have various
interesting properties, which motivates our future research. The full paper describes the creation of
ribbons and bounding surfaces, faithful distance computation and refinement of the patchwork.
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Fig. 5: Sheet metal part with deviation, before and after optimization.

(a) Initial ribbons (b) Initial patchwork

(c) First refinement step (d) Second refinement step

Fig. 6: Steps of adaptive refinement on a concept car model, showing deviation.
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